Электролиз правила электролиза

Электролиз — это окислительно-восстановительная реакция, которая протекает на электродах и основана на пропускании электрического тока через раствор или расплав.

Не менее важными участниками электролиза являются электроды: катод и анод. Если вы вдруг забыли, что такое катод и анод в химии, напомним.

Катод — это отрицательно заряженный электрод, который притягивает положительно заряженные ионы (катионы). А анод — это положительно заряженный электрод, который притягивает к себе отрицательно заряженные ионы (анионы). Таким образом, на катоде всегда происходит процесс восстановления, а на аноде всегда происходит процесс окисления.

Электроды бывают растворимые и инертные. Растворимые изготавливаются из металлов, например, меди и подвергаются химическим превращениям в ходе электролиза. А вот инертные или нерастворимые электроды не подвергаются химическим превращениям и остаются в неизменном виде как до реакции, так и после нее. Как правило, такие электроды изготавливают из графита или платины.

Виды электролиза

Различают два вида электролиза:

  1. Электролиз расплава.

  2. Электролиз водного раствора.

Прежде чем мы рассмотрим каждый процесс отдельно, давай познакомимся с общими для двух видов процессами на электродах.

Электролиз расплава

Рассмотрим электролиз расплава пищевой соли — хлорида натрия. При сильном нагревании кристаллический твердый хлорид натрия плавится. Полученный расплав содержит подвижные ионы хлора и натрия, освободившиеся из кристаллической решетки, и проводит электрический ток.

К: 2Na+ + 2e = 2Na0

А+: 2Cl − 2e = Cl2

Суммарное уравнение электролиза:

При опускании в расплав угольных (инертных) электродов, присоединенных к источнику тока, ионы приобретают направленное движение: катионы движутся к отрицательно заряженному электроду (катоду), анионы — к положительно заряженному электроду (аноду) и отдают электроны.

Электролиз NaCl

Теперь давайте рассмотрим электролиз расплава гидроксида калия.

Электролиз расплава гидроксида калия

На катоде происходит восстановление калия за счет принятия электронов. А на аноде протекает более сложная реакция. Гидроксогруппы отдают свой электрон и становятся нейтральными, но такое состояние для них крайне невыгодно, так как неустойчиво, и они объединяются в группы, чтобы потом разложиться с выделением газообразного кислорода и воды

Итог электролиза расплава — металлический калий на катоде, газообразный кислород и пары воды на аноде.

Электролиз раствора

Основным отличием водного раствора от расплава является присутствие молекул воды и ионов H+ и OH как продуктов диссоциации воды. В связи с этим возле катода и анода скапливаются ионы, которые конкурируют как друг с другом, так и с молекулами воды. Рассмотрим электролиз на примере водного раствора KF:

К: 4H2O + 4e = 2H20 + 4OH

А+: 2H2O − 4e = O2 + 4H+

Суммарное уравнение электролиза:

Электролиз KF

Как видно, ни калий, ни фтор не фигурируют в продуктах электролиза. Почему так происходит?

Наиболее активные металлы — сильные восстановители. Калий — как раз такой металл, поэтому обратный процесс восстановления активных металлов из соединений осуществить сложно. При электролизе водных растворов солей активных металлов на катоде протекает восстановление не катионов этих металлов, а воды с образованием водорода.

Разберем порядок восстановления катионов металлов на катоде в зависимости от их активности.

Последовательность разрядки катионов зависит от положения металла в электрохимическом ряду напряжения.

Электрохимический ряд напряжений металлов

  1. Если у катода накапливаются молекулы воды и катионы металла, который находится в ряду напряжения после водорода, то восстанавливаются ионы металла.

  2. Если у катода накапливаются молекулы воды и катионы металла, который стоит в начале ряда напряжения от лития до алюминия включительно, то восстанавливаются ионы водорода из молекул воды. Катионы металла не восстанавливаются, остаются в растворе.

  3. Если у катода накапливаются молекулы воды и катионы металла, который расположен в ряду напряжения между алюминием и водородом, то восстанавливаются и ионы металла, и частично ионы водорода из молекул воды.

  4. Если в растворе находится смесь катионов разных металлов, то сначала восстанавливаются катионы менее активного металла.

  5. При электролизе раствора кислоты на катоде восстанавливаются катионы водорода до газообразного водорода.

Для удобства мы собрали информацию об электролизе в таблице:

Катодные процессы при электролизе растворов солей

Теперь разберемся, что происходит с анионами в водных растворах при электролизе. Для начала познакомимся с последовательностью восстановления анионов на аноде:

Восстановительная активность анионов

Чем меньше выражена восстановительная активность, тем хуже анионы могут окисляться на аноде. К тому же процесс на аноде зависит от материала анода и от природы аниона.

Если анод инертный или нерастворимый, то на нем протекают следующие реакции:

  1. При электролизе растворов солей бескислородных кислот (кроме фторидов!), на аноде происходит процесс окисления аниона.

  2. При электролизе растворов солей кислородсодержащих кислот и фторидов на аноде выделяется газообразный кислород вследствие окисления молекул воды. Анион при этом не окисляется, оставаясь в растворе.

  3. При электролизе растворов щелочей происходит окисление гидроксид-ионов.

Если анод растворимый, то на нем всегда происходит окисление металла анода — независимо от природы аниона.

Процесс на аноде

Исключением является электролиз солей карбоновых кислот. Таблица выше не описывает происходящее на аноде. Давайте рассмотрим, что же там происходит.

В результате электролиза водных растворов солей щелочных металлов карбоновых кислот происходит образование углеводородов вследствие рекомбинации углеводородных радикалов.

В общем виде электролиз солей карбоновых кислот можно записать так:

Электролиз солей карбоновых кислот

На катоде образуется газообразный водород, а на аноде — углекислый газ, углеводород, полученный удвоением радикала. В катодном пространстве накапливается щелочь.

В случае разделения катодного и анодного пространства углекислый газ реагирует со щелочью с образованием гидрокарбоната.

Применение электролиза

А теперь самое главное: зачем вообще нужен электролиз? Рассмотрим применение этого вида ОВР:

  1. С помощью электролиза расплавов природных соединений в металлургической промышленности получают активные металлы (калий, натрий, бериллий, кальций, барий). С помощью электролиза растворов солей — цинк, кадмий, кобальт и другие.

  2. В химической промышленности электролиз используют для получения фтора, хлора, водорода, кислорода, щелочей, бертолетовой соли и других веществ.

  3. Электролиз с растворимым анодом используют для нанесения металлических покрытий (из хрома, золота, никеля, серебра), что предохраняет металлические изделия от коррозии и придает им декоративный вид.

Вопросы для самопроверки

1. Выберите верное продолжение фразы «катод — это…»:

  1. Положительно заряженный электрод, к которому притягиваются положительно заряженные ионы.

  2. Положительно заряженный электрод, к которому притягиваются отрицательно заряженные ионы.

  3. Отрицательно заряженный электрод, к которому притягиваются положительно заряженные ионы.

  4. Отрицательно заряженный электрод, к которому притягиваются отрицательно заряженные ионы.

2. Продолжите фразу «электролиз — это…»:

  1. ОВР с применением тока.

  2. Реакция без изменения степеней окисления с применением тока.

  3. ОВР с применением катализаторов.

  4. Обменная реакция.

3. Как заряжен анион?

  1. Положительно.

  2. Отрицательно.

  3. Нейтрально.

  4. Не имеет заряда.

4. Чем отличается электролиз раствора от электролиза расплава?

  1. Ничем.

  2. В расплаве плавится твердое.

  3. Присутствием молекул воды и продуктов ее диссоциации.

5. Если металл стоит в ряду активности металлов между алюминием и водородом, что выделится на катоде?

  1. Этот металл.

  2. Водород.

  3. Металл и водород.

  4. Оксид металла.

При электролиза водного раствора фторида лития что на аноде выделится?

  1. Фтор.

  2. Водород.

  3. Кислород.

  4. Вода.

Ответы

  1. c

  2. a

  3. b

  4. c

  5. c

  6. с

Электролизом называется совокупность процессов, происходящих при прохождении постоянного электри­ческого тока через электрохимическую систему, состоящую из двух электродов и расплава или раствора электролита.

Примером электролиза может служить электролиз расплава хлорида магния. При прохождении тока через расплав MgCl катионы магния под действием электрического поля движутся к отрицательному электроду. Здесь, взаимодействуя с приходящими по внешней цепи электронами, они восстанавливаются Mg2+ + 2е~ = Mg Анионы хлора перемещаются к положительному электроду и, отдавая избыточные электроны, окисляются. При этом первичным процессом является собственно электрохимическая стадия — окис­ление ионов хлора 2Сl = 2Сl + 2e а вторичным — связывание образующихся атомов хлора в моле­кулы: 2С1 = С12 Складывая уравнения процессов, протекающих у электродов, получим суммарное уравнение окислительно-восстановительной ре­акции, происходящей при электролизе расплава MgCl:

Mg2+ + 2Сl= Mg + Cl2 Эта реакция не может протекать самопроизвольно; энергия, не­обходимая для ее осуществления, поступает от внешнего источника тока.

На инертном аноде при электролизе водных растворов щелочей, кислородсодержащих кислот и их солей, а также фтороводорода и фторидов происходит электрохимическое окисление воды с выделением кислорода. В зависимости от рН раствора этот процесс протекает по-разному и может быть записан различными уравнениями.

В случае активного анода число конкурирующих окис­лительных процессов возрастает до трех: электрохимическое окис­ление воды с выделением кислорода, разряд аниона (т. е. его окисление) и электрохимическое окисление металла анода (так называемое анодное растворение металла).

31.Основные законы электролиза. Применение электролиза. Гальваносте­гия и гальванопластика. Электрохимическая обработка металлов. Ак­кумуляторы.

1. Масса образующегося при электролизе вещества пропорцио­нальна количеству прошедшего через раствор электричества.

Этот закон вытекает из сущности электролиза. Как уже гово­рилось, в месте соприкосновения металла с раствором происходит электрохимический процесс—взаимодействие ионов или молекул электролита с электронами металла, так что электролитическое образование вещества является результатом этого процесса. Ясно, что количество вещества, получающегося у электрода, всегда будет пропорционально числу прошедших по цепи электронов, т. е. коли­честву электричества.

2. При электролизе различных химических соединений равные
количества электричества приводят к электрохимическому превра­щению эквивалентных количеств веществ.

Важнейшее применение электролиз находит в металлургической и химической промышлен­ности и в гальванотехнике.

В металлургической промышленности электролизом расплав­ленных соединений и водных растворов получают металлы, а так же производят электролитическое рафинирование — очистку ме­таллов от вредных примесей и извлечение ценных компонентов.

К гальванотехнике относятся гальваностегия и гальванопласти­ка. Процессы гальваностегии представляют собой нанесение путем электролиза на поверхность металлических изделий слоев других металлов для предохранения этих изделий от коррозии, для придания их поверхности твердости, а также в декоративных целях. Из многочисленных применяемых в технике гальванотехни­ческих процессов важнейшими являются хромирование, цинкова­ние и никелирование.

Гальванопластикой называются процессы получения точных металлических копий с рельефных предметов электроосаж­дением металла. Путем гальванопластики изготовляют матрицы для прессования различных изделий (граммофонных пластинок, пуговиц и др.), матрицы для тиснения кожи и бумаги, печатные радиотехнические схемы, типографские клише.

32.Коррозия металлов. Классификация коррозионных процессов по меха­низму протекания и по характеру коррозионных поражений. Химиче­ская и электрохимическая коррозия. Коррозия под действием блуж­дающих токов.

Металлические материалы — металлы и сплавы на основе металлов, — приходя в соприкосновение с ок­ружающей их средой (газообразной или жидкой), подвергаются с той или иной скоростью разрушению. Причина этого разрушения лежит в химическом взаимодействии: металлы вступают в окис­лительно-восстановительные реакции с веществами, находящимися в окружающей среде, и окисляются. Самопроизвольное разрушение металлических материалов, про­исходящее под химическим воздействием окружающей среды, на­зывается коррозией (от латинского «corrodere» — разъедать).

Атмосферная к о р р о з и я — коррозия во влажном воз­духе при обычных температурах. Поверхность металла, находяще­гося во влажном воздухе, бывает покрыта пленкой воды, содержа­щей различные газы, и в первую очередь — кислород. Скорость атмосферной коррозии зависит от условий. В частности, на нее влияет влажность воздуха и содержание в нем газов, образующих с водою кислоты (СО2, SO2). Большое значение имеет также состояние поверхности металла: скорость атмосферной коррозии резко возрастает при наличии на поверхности шероховатостей, микрощелей, пор, зазоров и других мест, облегчающих конденса­цию влаги.

Коррозия в грунте* приводит к разрушению проложен­ных под землей трубопроводов, оболочек кабелей, деталей строи­тельных сооружений. Металл в этих условиях соприкасается с влагой грунта, содержащей растворенный воздух. В зависимости от состава грунтовых вод, а также от структуры и минералогиче­ского состава грунта, скорость этого вида коррозии может быть весьма различной.

Коррозия при неравномерной аэрации** — наблю­дается в тех случаях, когда деталь или конструкция находится в растворе, но доступ растворенного кислорода к различным ее частям неодинаков. При этом те части металла, доступ кислорода к которым минимален, корродируют значительно сильнее тех ча­стей, доступ кислорода к которым больше. Такое неравномерное распределение коррозии объясняется следующим образом. При восстановлении кислорода О2 + 4Н+ + 4е~ = 2Н2О расходуются ионы водорода и раствор, следовательно, несколько подщелачивается. Металлы, и в частности железо, при подщелачивании раствора легче переходят в пассивное состояние. Поэтому аэрируемые участки металла переходят в пассивное состояние и скорость коррозии на них снижается. На неаэрируемых участках не происходит пассивирования — здесь протекает процесс окисле­ния металла, приводящий к переходу его ионов в раствор:

М = Мг+ + ге~ Таким образом, при неравномерной аэрации металла осуще­ствляется пространственное разделение окислительно-восстанови­тельной реакции: восстановление кислорода протекает на более аэрируемых участках, а окисление металла — на менее аэрируе­мых участках поверхности. Локализация процесса окисления при­водит к местной коррози и — интенсивному разрушению ме­талла на отдельных участках. Местная коррозия приводит к появ­лению на поверхности металла углублений («язв»), которые со временем могут превращаться в сквозные отверстия. Иногда раз­витие язв трудно обнаружить, например, из-за остатков окалины на поверхности металла. Этот вид коррозии особенно опасен для обшивки судов, для промышленной химической аппаратуры и в ряде других случаев.

Контактная коррозия может протекать, когда два ме­талла с различными потенциалами соприкасаются друг с другом либо в водной среде, либо при наличии влаги, конденсирующейся из воздуха. Так же, как и в рассмотренном выше случае значи­тельных включений, металлы оказывают друг на друга поляризую­щее действие; металл с меньшим потенциалом поляризуется анодно, и скорость его коррозии вблизи места контакта резко воз­растает.

33.Методы защиты металлов от коррозии. Металлические защитные по­крытия (анодные, катодные). Неметаллические покрытия. Электрохи­мические методы защиты от коррозии.

Для предупреждения коррозии и защиты от нее применяются разнообразные методы. К важнейшим из них относятся следую­щие:

1) применение химически стойких сплавов; 2защита поверхности металла покрытиями; 3 обработка коррозионной среды; 4 электрохимические методы.

В качестве металлов для покрытия обычно применяют метал­лы, образующие на своей поверхности защитные пленки. Как уже говорилось, к таким металлам относятся хром, никель, цинк, кад­мий, алюминий, олово и некоторые другие.

К неметаллическим относятся покрытия лаками, красками, эмалями, фенолоформальдегидными и другими смолами. Для дли­тельной защиты от атмосферной коррозии металлических соору­жений, деталей, машин, приборов чаще всего применяются лако­красочные покрытия.

К электрохимическим методам защиты металлов относятся катодная защита и метод протекторов. При катодной защите защищаемая конструкция или деталь присоединяется к отрица­тельному полюсу источника электрической энергии и становится катодом. В качестве анодов используются куски железа. При над­лежащей силе тока в цепи на защищаемом изделии происходит восстановление окислителя, процесс же окисления претерпевает вещество анода.

Метод протекторов осуществляется присоединением к за­щищаемому металлу большого листа, изготовленного из другого, более активного металла—-протектора. В качестве протектора при защите стальных изделий обычно применяют цинк или сплавы на основе магния. При хорошем контакте между металлами защищае­мый металл (железо) и металл протектора (например, цинк) оказывают друг на друга поляризующее действие. Согласно взаим­ному положению этих металлов в ряду напряжений, железо поля­ризуется катодно, а цинк — анодно. В результате этого на железе идет процесс восстановления того окислителя , который присутствует в воде (обычно растворенный кислород), а цинк окисляется. И протекторы, и катодная защита применимы в средах, хорошо проводящих электрический ток, например в морской воде. В част­ности, протекторы широко применяются для защиты подводных частей морских судов. Ясно, что убытки, вызванные коррозией корпуса морского судна и связанные с его простоем и ремонтом, очень велики и во много раз превышают стоимость протекторов.

34.Общие свойства металлов. Металлическая связь. Тепло- и электропро­водность. Физико-механические и химические свойства металлов.

Физические и химические свойства металлов. Электронное строение металлов, изоляторов и полупроводников. Металлы обла­дают рядом общих свойств. К общим физическим свойствам ме­таллов относятся их высокая электрическая проводимость и тепло­проводность, пластичность, т. е. способность подвергаться деформации при обычных и при повышенных температурах, не разрушаясь. Пластичность металлов имеет очень большое практи­ческое значение. Благодаря этому свойству металлы поддаются ковке, прокатке, вытягиванию в проволоку (волочению), штам­повке.

Кристаллическое строение металлов. Кристаллическое строение металлов изучается различными методами. Их можно разделить на две группы. К первой принадлежат методы изучения внутреннего строения кристаллов, ко второй — методы изучения их внешних форм.

Внутреннее строение кристаллов изучается глазным образом с помощью рентгеноструктурного анализа. По его дан­ным для всех металлов установлены типы и параметры кристал­лических решеток.

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 5 апреля 2022 года; проверки требуют 5 правок.

Электролиз правила электролиза

Электро́лиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор либо расплав электролита.

Электролиз является одним из лучших способов золочения или покрытия металла медью, золотом.

Упорядоченное движение ионов в проводящих жидкостях происходит в электрическом поле, которое создаётся электродами — проводниками, соединёнными с полюсами источника электрической энергии. Катодом при электролизе называется отрицательный электрод, анодом — положительный[1]. Положительные ионы — катионы (ионы металлов, водородные ионы, ионы аммония и др.) — движутся к катоду, отрицательные ионы — анионы (ионы кислотных остатков и гидроксильной группы) — движутся к аноду.

Реакции, происходящие при электролизе на электродах, называются вторичными. Первичными являются реакции диссоциации в электролите. Разделение реакций на первичные и вторичные помогло Майклу Фарадею установить законы электролиза.

С точки зрения химии, электролиз — окислительно-восстановительный процесс, протекающий на электродах при прохождении постоянного электрического тока через раствор электролита.

Применение[править | править код]

Электролиз правила электролиза

Электролиз правила электролиза

Электролиз правила электролиза

Электролиз широко применяется в современной промышленности. В частности, электролиз является одним из способов промышленного получения алюминия, меди, водорода, диоксида марганца[2], пероксида водорода. Большое количество металлов извлекается из руд и подвергается переработке с помощью электролиза (электроэкстракция, электрорафинирование). Также электролиз является основным процессом, благодаря которому функционирует химический источник тока.

Электролиз находит применение в очистке сточных вод (процессы электрокоагуляции, электроэкстракции, электрофлотации).

Применяется для получения многих веществ (металлов, водорода, хлора и др.), при нанесении металлических покрытий (гальваностегия), воспроизведении формы предметов (гальванопластика).

Первый закон Фарадея[править | править код]

В 1832 году Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит:

, если через электролит пропускается в течение времени t постоянный ток с силой тока I.

Коэффициент пропорциональности называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

Вывод закона Фарадея[править | править код]

(1)
(2)
(3)
(4)
, (5)
где z — валентность атома (иона) вещества,
e — заряд электрона
Подставляя (2)-(5) в (1), получим
,

где  — постоянная Фарадея.

Второй закон Фарадея[править | править код]

Электрохимические эквиваленты различных веществ пропорциональны их молярным массам и обратно пропорциональны числам, выражающим их химическую валентность.

Химическим эквивалентом иона называется отношение молярной массы иона к его валентности . Поэтому электрохимический эквивалент

,

где  — постоянная Фарадея.

Второй закон Фарадея записывается в следующем виде:

,
где  — молярная масса данного вещества, образовавшегося (однако не обязательно выделившегося — оно могло и вступить в какую-либо реакцию сразу после образования) в результате электролиза, г/моль
 — сила тока, пропущенного через вещество или смесь веществ (раствор, расплав), А
 — время, в течение которого проводился электролиз, с
 — постоянная Фарадея, Кл·моль−1
 — число участвующих в процессе электронов, которое при достаточно больших значениях силы тока равно абсолютной величине заряда иона (и его противоиона), принявшего непосредственное участие в электролизе (окисленного или восстановленного)
Однако это не всегда так; например, при электролизе раствора соли меди(II) может образовываться не только свободная медь, но и ионы меди(I) (при небольшой силе тока).

Изменение электролизом веществ[править | править код]

Не все вещества будут электролизироваться при пропускании электрического тока. Существуют некоторые закономерности и правила.

Катионы активных металлов Катионы менее активных металлов Катионы неактивных металлов
Li+, Cs+, Rb+, K+, Ba2+, Sr2+, Ca2+, Na+, Mg2+, Be2+, Al3+ Mn2+, Cr3+, Zn2+, Ga3+, Fe2+, Cd2+, In3+, Tl+, Co2+, Ni2+, Mo4+, Sn2+, Pb2+ Bi3+, Cu2+, Ag+, Hg2+, Pd3+, Pt2+, Au3+
Тяжело разряжаются (только из расплавов), в водном растворе электролизу подвергается вода с выделением водорода В водном растворе восстанавливается металл (при малой концентрации катионов в растворе — металл и водород) Легко разряжаются, и восстанавливается только металл
Анионы кислородсодержащих кислот и фторид-ион Гидроксид-ионы; анионы бескислородных кислот (кроме F)
PO43−, CO32−, SO42−, NO3, NO2, ClO4, F OH, Cl, Br, I, S2−
Тяжело разряжаются (только из расплавов), в водном растворе электролизу подвергается вода с выделением кислорода Легко разряжаются

Примеры[править | править код]

напряжение разное на аноде катоде
конечные уровнения не содержат всех данных (раствора как вода или растворенных веществ)

Расплавы[править | править код]

Активные металлы, менее активные металлы и неактивные металлы в расплавах ведут себя одинаково.

Соль активного металла и бескислородной кислоты Соль активного металла и кислородсодержащей кислоты Гидроксид: активный металл и гидроксид-ион

K(-):

A(+):

Вывод:

K(-):

A(+):

Вывод:

K(-):

A(+):

Вывод:

Растворы[править | править код]

Активные металлы[править | править код]

Соль активного металла и бескислородной кислоты Соль активного металла и кислородсодержащего кислотного остатка Гидроксид: активный металл и гидроксид-ион

K(-):

A(+):

Вывод:

K(-):

A(+):

Вывод:

K(-):

A(+):

Суммарно:

Вывод:

Менее активные металлы и неактивные металлы[править | править код]

Соль менее активного металла и бескислородной кислоты Соль менее активного металла и кислородсодержащей кислоты Гидроксид

K(-):

A(+):

Вывод:

K(-):

A(+):

Вывод:

Невозможно: гидроксиды неактивных металлов нерастворимы в воде

Мнемоническое правило[править | править код]

Для запоминания катодных и анодных процессов в электрохимии существует следующее мнемоническое правило:

  • У анода анионы окисляются.
  • На катоде катионы восстанавливаются.

В первой строке все слова начинаются с гласной буквы, во второй — с согласной.

Или проще:

  • КАТод — КАТионы (ионы у катода)
  • АНод — АНионы (ионы у анода)

Электролиз в газах[править | править код]

Электролиз в газах, при наличии ионизатора, заключается в том, что при прохождении через них постоянного электрического тока наблюдается выделение веществ на электродах. Законы Фарадея в газах не действительны, но существуют несколько закономерностей:

  1. при отсутствии ионизатора электролиз проводиться не будет, даже при высоком напряжении;
  2. электролизу подвергаются только бескислородные кислоты в газообразном состоянии и некоторые газы;
  3. уравнения электролиза, как в электролитах, так и в газах, всегда остаются постоянными.

См. также[править | править код]

  • Электрохимия
  • Ионная жидкость
  • Алюминий
  • Выпрямитель
  • Инвертор
  • Физические основы
  • Электрофлотация

Примечания[править | править код]

  1. Обратное обозначение знака катода и анода встречается в литературе при описании гальванических элементов
  2. Электросинтез // Химическая энциклопедия.

Ссылки[править | править код]

  • Процессы, протекающие при электролизе
  • Статья «Электролиз» (Химическая энциклопедия)
  • Электродиализ
  • Электрофлотация
  • Учебный фильм «Электролиз»[уточнить]

Факторы, влияющие на процесс электролиза

Процесс электролиза зависит от следующих факторов:

  1. Состав электролита. Значительное влияние оказывают различные примеси. Они подразделяются на 3 типа – катионы, анионы и органика. Вещества могут быть более или менее отрицательными, чем основной металл, что и мешает процессу. Среди органических примесей выделяются загрязнители (например масла) и ПАВ. Их концентрация имеет предельно допустимые значения.
  2. Плотность тока. В соответствии с законами Фарадея, масса осаждаемого вещества увеличивается с увеличением силы тока. Однако возникают неблагоприятные обстоятельства – концентрированная поляризация, повышенное напряжение, интенсивный разогрев электролита. С учетом этого существуют оптимальные значения плотности тока для каждого конкретного случая.
  3. рН электролита. Кислотность среды также выбирается с учетом металлов. Например оптимальное значение кислотности электролита для цинка – 140 г/куб.дм.
  4. Температура электролита. Она влияет неоднозначно. С увеличением температуры растет скорость электролиза, но повышается и активность примесей. Для каждого процесса есть оптимальная температура. Обычно она находится в пределах 38-45 градусов.

Электролиз расплавов

Электролизер

Если сравнить гальванолиз расплавов и растворов, то в расплавах все М: активные, малоактивные и неактивные, реагируют на процесс электризации одинаково.

Внимание! Вода при электролизе расплавов в электролите отсутствует. Поэтому осложнений, связанных с её вмешательством, не возникает

Описание такой реакции можно рассмотреть на примере расплава NaCl (хлористого натрия).

В этом случае на катоде происходит восстановление катионов Na:

Na+ + ē → Na0.

Анод вызывает окисление анионов Cl:

2Cl– – 2ē → Cl20.

Общее уравнение гальванолиза расплава NaCl будет иметь вид:

2Na+Cl– → 2Na0 + Cl20.

Электролиз правила электролиза
Схема электролиза расплава NaCl

Билет 39. Применение электролиза в технике

Электролиз находит широкое применение в технике.

Очистка или рафинирование металлов. Процесс происходит в электролитической ванне. Анодом служит металл, подлежащий очистке, катодом — тонкая пластинка из чистого металла, а электролитом — раствор соли данного металла, например, при рафинировании меди — раствор медного купороса. В загрязненных металлах могут содержаться ценные примеси. Так, в меди часто содержится никель и серебро. Для того чтобы на катоде выделялся только чистый металл, необходимо учитывать, что выделение каждого вещества начинается лишь при некоторой определенной разности потенциалов между электродами, называемой «потенциалом разложения». При надлежащем ее выборе из раствора медного купороса на катоде выделяется чистая медь, а примеси выпадают в виде осадка или переходят в раствор.

Электрометаллургия. Некоторые металлы, например, алюминий, получают методом электролиза из расплавленной руды. Электролитической ванной и одновременно катодом служит железный ящик с угольным полом, а анодом — угольные стержни. Температура руды (около 900 °С) поддерживается протекающим в ней током. Расплавленный алюминий опускается на дно ящика, откуда его через особое отверстие выпускают в формы для отливки.

Гальваностегия — электролитический способ покрытия металлических изделий слоем благородного или другого металла (золота, платины), не поддающегося окислению. Например, при никелировании предмета он сам служит катодом, кусок никеля — анодом. Пропуская через электролитическую ванну в течение некоторого времени электрический ток, покрывают предмет слоем никеля нужной толщины.

Гальванопластика, или электролитическое осаждение металла на поверхности предмета для воспроизведения его формы, была изобретена в 1837 г. русским ученым Б. С. Якоби, предложившим использовать электролиз для получения металлических отпечатков рельефных предметов (медалей, монет и др.). С предмета снимают слепок из воска или вырезают выпуклое изображение на деревянной доске и делают его проводящим, покрывая слоем графита. Затем опускают слепок или доску в качестве катода в электролит. Анодом служит кусок металла, используемого для осаждения. Этим способом изготовляют, например, типографские клише.

Электролитическим путем получают тяжелую воду (D2O), в которой атомы водорода заменены атомами его изотопа — дейтерия (D) с атомной массой 2.

Лабораторная работа №4.

1. Электролиз водного раствора иодида калия.

2KJ+2H2O электролиз J2+2H2+2KOH

Процесс на аноде.

А(+): 2J—2e-→J2

Процесс на катоде.

К(-): 2H2O+2e-→H2+2OH-

В результате электролиза наблюдаем:

При добавлении фенолфталеина в околокатодное пространство раствор становится малинового цвета, так как при восстановлении молекул воды образуются ионы ОН-, которые создают щелочную среду.

При добавлении раствора крахмала в околоанодное простанство наблюдаем появление синего окрашивания, которое является качественной реакцией на молекулярный йод, который образуется при окислении ионов J-.

2. Электролиз водного раствора сульфата натрия.

  • Na2SO4+2H2O электролиз Na2SO4+2H2+O2↑
  • 2H2O электролиз 2H2+O2↑

Процесс на аноде.

А(+): H2O-4e-→O2+4H+

Процесс на катоде.

К(-): 2H2O+2e-→H2+2OH-

При добавлении раствора универсального индикатора в околокатодное пространство наблюдаем синее окрашивание, так как при восстановлении молекул воды образуются ОН- ионы, которые дают щелочную среду.

При добавлении раствора универсального индикатора в околоанодное пространство наблюдаем красное окрашивание, так как при окислении молекул воды образуются H+ ионы, кторые дают кислую среду.

Сульфат натрия не принимает участия в электролизе. Протекает только электролиз воды.

3. Электролиз водного раствора сульфата меди (II).

2CuSO4+2H2Oэлектролиз 2Cu+O2+2H2SO4

Процесс на аноде.

А(+): H2O-4e-→O2+4H+

Процесс на катоде.

К(-): Cu2++2е-→Сu0

При электролизе раствора сульфата меди (II) на катоде наблюдаем выделение осадка красной меди.

В околоанодном пространстве выделяются пузырьки кислорода.

Вывод по проведенной работе:

Электролиз -окислительно-восстановительный процесс, протекающий на электродах при пропускании постоянного тока через систему, включающую электролит.

Электролиз растворов осложняется участием в электродных процессах ионов Н⁺ и ОН⁻. Кроме того, молекулы воды сами могут подвергаться электродному окислению или восстановлению.

Катодные процессы в водных растворах при электролизе зависят от природы катиона.

Процессы, происходящие на катоде зависят от окислительной способности катиона металла:

  • Li, K, Ca, Na, Mg, Al Mn, Zn, Fe, Ni, Sn, Pb H Cu, Hg, Ag, Pt, Au
  • Меn⁺не восстанавливается (остаётся в растворе)
  • 2 Н₂О+ 2ē = Н₂↑+2 ОН⁻ Меn⁺ + nē = Me°
  • 2 H₂O + 2ē = H₂↑ + 2 OH⁻ Men⁺ + nē = Me°

Анодные процессы в водных растворах зависят от материала анода и природы аниона.

Процессы, происходящие на аноде

Безкислородные кислотные остатки

Кислородсодержащие кислотные остатки

  • J⁻, Br⁻, S²⁻, Cl⁻ Окисление Аm⁻ (кроме F⁻)
  • Аm⁻ – m ē = A° OH⁻, SO₄²⁻, NO₃⁻, F⁻

В щелочной среде:

  • 4 ОН⁻ – 4 ē = О₂↑ + 2 Н₂О
  • в кислой и нейтральной среде: 2 Н₂О – 4 ē = О₂↑ + 4 Н⁺

(Влияние материала анода не рассматриваем, так как в лабораторной работе влияние материала анода на протекание электролиза не рассматривается).

8. Приведите формулировку законов Фарадея? Каковы их математические выражения? Что называют числом Фарадея? Составьте электронные уравнения процессов, происходящих на инертных электродах при электролизе растворов CdCl2 и CdSO4.

Ответ:

Течение первичных анодных и катодных реакций во время протекания электролиза подчиняется законам Фарадея.

Первый закон Фарадея: масса вещества m, выделяемая на электроде электрическим током, пропорциональная количеству электричества Q, прошедшему через электролит:

  • m = kQ, но Q =It (1)
  • где I – сила тока, А; t – время пропускание тока, с.
  • m = kIt (2)

k – коэффициент пропорциональности, равный количеству вещества, выделяемого при прохождении одного кулона (Кл) электричества (электрохимический эквивалент).

Второй закон Фарадея: массы различных веществ, выделенных одним и тем же количеством электричества, пропорциональных их химическим эквивалентам (Мэ):

Для выделения 1 грамма эквивалента вещества требуется пропустить через электролит одно и тоже количество электричества, равное приблизительно 96500 Кл (число Фарадея). Следовательно:

Подставив последнее уравнение в (2), получим формулу, объединяющую оба закона Фарадея.
(3)

Соотношение (3) используют в расчетах процессов при электролизе.

Электролиз водного раствора хлорида кадмия (II):

  • CdCl2Cd2++2Cl-
  • K(-):Cd2+, H2O А(+): Cl-, H2O
  • Cd2++2e-→Cd 2Cl—2e-→Cl2

Суммарное уравнение электролиза:

CdCl2→Сd+Cl2

Электролиз водного раствора сульфата кадмия (II):

  • CdSO4→ Cd2++SO42-
  • K(-):Cd2+, H2O А(+):SO42-, H2O
  • Cd2++2e-→Cd 2H2O-4e-→O2+4H+

Суммарное уравнение электролиза:

2CdSO4+2 H2O→2Cd+O2+2H2SO4

Уравнения

Диаграмма, показывающая общее химическое уравнение .

В чистой воде на отрицательно заряженном катоде происходит реакция восстановления , при которой электроны (e – ) с катода передаются катионам водорода с образованием газообразного водорода. Полуреакции , сбалансирован с кислотой, является:

Восстановление на катоде: 2 H + ( водн. ) + 2e – → H 2 ( г )

На положительно заряженном аноде происходит реакция окисления , генерирующая газообразный кислород и отдающая электроны аноду для замыкания цепи:

Окисление на аноде: 2 H 2 O ( l ) → O 2 ( г ) + 4 H + ( водн. ) + 4e –

Те же полуреакции также могут быть уравновешены основанием, указанным ниже. Не все полуреакции необходимо уравновешивать кислотой или основанием. Многие из них, например, окисление или восстановление воды, перечисленные здесь. Чтобы добавить половину реакции, обе они должны быть сбалансированы кислотой или основанием. Кислотно-сбалансированные реакции преобладают в кислых (с низким pH) растворах, тогда как реакции со сбалансированным основанием преобладают в основных (с высоким pH) растворах.

Катод (восстановление): 2 H 2 O ( л ) + 2e – H 2 ( г ) + 2 OH – ( водн. )
Анод (окисление): 2 ОН – ( водн. ) 1/2 O 2 ( г ) + H 2 O ( л ) + 2 e –

Объединение любой пары половин реакции приводит к одинаковому общему разложению воды на кислород и водород:

Общая реакция: 2 H 2 O ( л ) → 2 H 2 ( г ) + O 2 ( г ).

Таким образом, количество образующихся молекул водорода в два раза превышает количество молекул кислорода. Если предположить, что температура и давление для обоих газов одинаковы, полученный газообразный водород имеет, следовательно, вдвое больший объем, чем произведенный газообразный кислород. Количество электронов, проталкиваемых через воду, в два раза превышает количество генерируемых молекул водорода и в четыре раза больше количества генерируемых молекул кислорода.

Промышленное применение электролиза

Электролиз широко используется в следующих сферах промышленности:

  • Выделение и очистка металлов.
  • Получение алюминия, магния, натрия, кадмия.
  • Получение щелочей, хлора, водорода.
  • Очистка меди, никеля, свинца.
  • Процессы напыления защитных покрытий с целью защиты металлов от коррозии.лектролиз (от греч. «лизис» – разложение, растворение, распад) – это совокупность физико-химических явлений на находящихся в жидкости электродах при прохождении электрического тока. Например, погрузив в воду два электрода и подключив их к источнику постоянного тока, мы обнаружим, что вокруг электродов выделяются пузырьки – это газы водород и кислород. При их образовании уменьшается масса воды, то есть она разлагается на входящие в её состав элементы.

Если электроды погружать не в воду, а в растворы или расплавы солей, кислот и щелочей, то можно наблюдать выделение других газов и даже твёрдых веществ, оседающих на поверхности электродов. По этой причине электролиз широко применяют в технике. Рассмотрим самые важные направления его применения. Но перед этим запомним, что электрод, присоединяемый к «+» источника тока, называют анодом, а электрод, присоединяемый к «–» источника тока, называют катодом.

Электролиз правила электролиза
Получение рафинированной меди.

Электрометаллургия

Электролитическим путём в промышленности получают многие металлы: алюминий, медь, магний, хром, титан и др. Например, для получения чистого алюминия в специальную металлическую ванну вливают расплавленную при 900 °С руду, содержащую алюминий в химически связанном виде (обычно в виде оксидов). В ванну опускают угольные стержни, которые служат анодами, а сама ванна – катодом. При прохождении тока через расплав на дне ванны выделяется жидкий алюминий, который сливают через отверстие внизу ванны.

Электролиз правила электролиза
Электрометаллургия.

Рафинирование (очистка) меди

Медь, применяемая в электро- и радиотехнике для изготовления проводников, должна быть чистой, поскольку примеси уменьшают электропроводность. Для очистки меди от примесей в электролитическую ванну заливают раствор сульфата меди II (устаревшее название – медный купорос) и опускают две пластины: анод – толстую пластину из неочищенной меди и катод – тонкий лист из чистой меди.

При пропускании электрического тока анод постепенно растворяется, примеси выпадают в осадок, а на катоде оседает чистая медь. Аналогичным способом получают и другие чистые металлы – никель, свинец, золото.

Гальваностегия

Для придания изделиям красивого внешнего вида, прочности или для предохранения от коррозии, их покрывают тонким слоем какого-либо металла: никеля, хрома и др. Для этого изделие тщательно очищают, обезжиривают и помещают как катод в электролитическую ванну, содержащую соль того металла, которым желают покрыть. Для более равномерного покрытия полезно применять две пластины в качестве анода, помещая изделие между ними.

Электролиз правила электролиза
Результат гальваностегии.

Гальванопластика

Это электролитическое осаждение металла на поверхности какого-либо предмета для воспроизведения его формы. Для этого с предмета сначала снимают слепок (из воска или гипса) и покрывают его токопроводящим слоем, например, слоем графита. Подготовленный таким способом предмет помещают в качестве катода в ванну с раствором соли соответствующего металла. При включении тока металл из электролита оседает на поверхности предмета. Гальванопластику используют для изготовления неограниченного числа точных копий того изделия, с которого был снят слепок.

Гальванополировка

Если резное металлическое изделие поместить в раствор электролита и включить ток, то наиболее сильное электрическое поле образуется у микроскопических выступов на поверхности этого изделия. Если оно подключено к «+» источника тока, то наиболее интенсивно ионы металла будут «вырываться» именно из выступов, и поверхность металла выровняется.

Будет интересно Что такое электрическое поле: объяснение простыми словам

Электрофорез

От греч. «форезис» – перенесение), это лечебная процедура. Электроды накладывают на тело человека. Между телом и электродом помещают бумагу или ткань, пропитанную электропроводящим лекарственным препаратом. При включении тока начинается движение заряженных частиц из бумаги или ткани в кожу, а затем в тело человека. Так происходит процесс ввода лекарств, скорость которого можно регулировать, изменяя силу тока. Электролиз применяют также и для синтеза различных неорганических и органических веществ; это изучается в отдельной науке – электрохимии.

Таблица изменения веществ с помощью электролиза

Усиление восстановительных способностей веществ:

Na+

Mg2+

Al3+

Zn2+

Fe3+

Ni2+

Sn2+

Pb2+

H+

Cu2

Ag+

Натрий

Магний

Алюминий

Цинк

Железо

Никель

Олово

Свинец

Водород

Медь

Серебро

Усиление окислительных способностей веществ:

I-

Br-

Cl-

OH-

NO3-

CO32-

SO42-.

Йодид (соли, образованные йодоводородной кислотой)

Бромид (соли, образованные бромоводородной кислотой)

Хлорид (соли, образованные соляной кислотой)

Гидроксид

Нитрат (соли, образованные азотной кислотой)

Карбонат (соли, образованные угольной кислотой)

Сульфат (соли, образованные серной кислотой)

Катод (отрицательный)

Анод (положительный)

Восстановление катионов после водорода

Окисление анионов кислот, не содержащих кислорода

Восстановление катионов, имеющих среднюю активность

Окисление анионов оксокислот

Восстановление наиболее активных катионов

Окисление анионов гидроксидов

Восстановление катионов водорода

Правила электролиза водных растворов

Электролиз правила электролиза

  • Электролиз на катоде зависит только от положения металла в электрохимическом ряду напряжений:
    • если катион электролита стоит левее алюминия (включительно), на катоде восстанавливается вода с выделением водорода, а катионы металла остаются в растворе:
      2H2O+2e- = H2↑+2OH- (Li…Al)
    • если катион электролита стоит между алюминием и водородом, на катоде восстанавливаются и вода, и катионы металла;
      Men++ne- = Me; 2H2O+2e- = H2↑+2OH- (Mn…Pb)
    • если катион электролита стоит правее водорода, на катоде восстанавливается только катионы металла:
      Men++ne- = Me (Cu…Au)
    • если в растворе электролита находится несколько металлов, первыми восстанавливаются катионы металла, который в ряду напряжений стоит правее остальных.
  • Электролиз на аноде зависит только от материала, из которого изготовлен анод:
    • в случае растворимого анода (металлы, которые окисляются в процессе электролиза – железо, медь, цинк, серебро) – всегда идет процесс окисления металла анода:Me-ne- = Men+
    • в случае нерастворимого анода (золото, платина, графит):
      • идет процесс окисления аниона при электролизе растворов солей бескислородных кислот, за исключением фторидов:
        Acm-me- = Ac
      • идет процесс окисления воды в остальных случаях (электролиз оксикислот и фторидов) – анион остается в растворе:
        2H2O-4e- = 4H++O2
      • при электролизе растворов щелочей окисляются гидроксид-ионы:
        4OH–4e- = 2H2O+O2
    • восстановительная активность анионов уменьшается в ряду (соответственно увеличивается способность окисляться):
      I-; Br-; S2-; Cl-; OH-; SO42-; NO3-; F-

Применение электролиза в технике

Электролиз находит широкое применение в технике.Очистка или рафинирование металлов

. Процесс происходит в электролитической ванне. Анодом служит металл, подлежащий очистке, катодом — тонкая пластинка из чистого металла, а электролитом — раствор соли данного металла, например, при рафинировании меди — раствор медного купороса. В загрязненных металлах могут содержаться ценные примеси. Так, в меди часто содержится никель и серебро. Для того чтобы на катоде выделялся только чистый металл, необходимо учитывать, что выделение каждого вещества начинается лишь при некоторой определенной разности потенциалов между электродами, называемой «потенциалом разложения». При надлежащем ее выборе из раствора медного купороса на катоде выделяется чистая медь, а примеси выпадают в виде осадка или переходят в раствор.

Электрометаллургия

. Некоторые металлы, например, алюминий, получают методом электролиза из расплавленной руды. Электролитической ванной и одновременно катодом служит железный ящик с угольным полом, а анодом — угольные стержни. Температура руды (около 900 °С) поддерживается протекающим в ней током. Расплавленный алюминий опускается на дно ящика, откуда его через особое отверстие выпускают в формы для отливки.

Гальваностегия

— электролитический способ покрытия металлических изделий слоем благородного или другого металла (золота, платины), не поддающегося окислению. Например, при никелировании предмета он сам служит катодом, кусок никеля — анодом. Пропуская через электролитическую ванну в течение некоторого времени электрический ток, покрывают предмет слоем никеля нужной толщины.

Гальванопластика

, или электролитическое осаждение металла на поверхности предмета для воспроизведения его формы, была изобретена в 1837 г. русским ученым Б. С. Якоби, предложившим использовать электролиз для получения металлических отпечатков рельефных предметов (медалей, монет и др.). С предмета снимают слепок из воска или вырезают выпуклое изображение на деревянной доске и делают его проводящим, покрывая слоем графита. Затем опускают слепок или доску в качестве катода в электролит. Анодом служит кусок металла, используемого для осаждения. Этим способом изготовляют, например, типографские клише.

Электролитическим путем получают тяжелую воду (D2O

), в которой атомы водорода заменены атомами его изотопа — дейтерия (D ) с атомной массой 2.

Промышленное использование

Процесс Холла-Эру для производства алюминия

  • Электрометаллургии из алюминия , лития , натрия , калия , магния , кальция , а в некоторых случаях меди .
  • Производство хлора и гидроксида натрия , называемое хлорно-щелочным процессом .
  • Производство хлората натрия и хлората калия .
  • Производство перфторированных органических соединений, таких как трифторуксусная кислота, методом электрофторирования .
  • из рафинированной меди .
  • Производство топлива, такого как кислород (для космических кораблей и атомных подводных лодок ), а также водорода .
  • и чистка старых монет и других металлических предметов.

Производственные процессы

В производстве электролиз можно использовать для:

  • Гальваника , при которой на материал подложки наносится тонкая пленка металла. Гальваника используется во многих отраслях промышленности как в функциональных, так и в декоративных целях, например в кузовах автомобилей и никелевых монетах.
  • Электрохимическая обработка (ЭХМ), при которой электролитический катод используется в качестве инструмента для удаления материала путем анодного окисления с заготовки. ECM часто используется как метод удаления заусенцев или травления металлических поверхностей, таких как инструменты или ножи, с несмываемой меткой или логотипом.

Первый закон Фарадея

Установленный Фарадеем первый закон говорит о прямой пропорциональности между массой вещества, выделившейся в ходе электролиза, и величиной заряда, который прошел через электролит.

Электролиз правила электролиза

Правило подкреплено формулой m = k * q

, то есть произведение заряда вещества на его электрохимический эквивалент, что равняется его массе.

Проверка первого закона Фарадея происходит следующим образом:

  • нужно взять три любых электролита, например, А, Б и В и пропустить ток через каждый;
  • если вещества одни и те же, то массы выделившихся можно назвать Г, Г1 и Г2;
  • при этом будет верным следующее равенство: Г= Г1+Г2.

Теоретическая часть

Электролиз – совокупность окислительно-восстановительных реакций, протекающих под действием постоянного электрического тока на электродах, погруженных в раствор или расплав электролита. При электролизе химическая реакция осуществляется за счет энергии электрического тока, подводимой извне. Электролиз проводят в особых приборах – электролизерах. Это сосуд с раствором или расплавом электролита и опущенными в него электродами из металла или графита. К электродам прикладывают разность потенциалов от внешнего источника постоянного тока. Катод отдает электроны частицам вещества в электролите и восстанавливает их. Анод отбирает электроны от частиц в электролите, окисляя их.

Электролиз правила электролиза
Электролиз расплавов оснований.

При электролизе процессы окисления и восстановления протекают на различных электродах – аноде и катоде. Анод – это электрод, на котором происходит процесс окисления. При электролизе анод заряжен положительно. Катод – это электрод, на котором происходит процесс восстановления. При электролизе катод заряжен отрицательно. На окислительно-восстановительные процессы, протекающие при электролизе, влияют различные факторы:

  • Природа электролита и растворителя;
  • Материал электродов;
  • Режим электролиза (напряжение, сила тока, температура).

Будет интересно Все о законе Ома: простыми словами с примерами для «чайников»

Различают 2 типа электролиза: электролиз расплава и электролиз растворов электролитов. Электролиз расплавов оксидов На катоде идет восстановление катионов металла: Men++ nē = Me0 , т.е. на катоде выделяется металл. На аноде окисляется кислород: O –2 –2ē = O2 Например, электролиз расплава оксида калия: 2K2O = 4K + O2 При изучении алюминия, способов получения металлов, надо знать электролиз оксида алюминия. Металлический алюминий получают электролизом раствора глинозема Al2O3 в расплавленном криолите Na2AlF6 при 960–970°С. Электролиз Al2O3 можно представить следующей схемой: в расплаве оксид алюминия диссоциирует: Al2O3= Al3++ AlO3 3– , на катоде восстанавливаются ионы Al3+ : Al3++3ē Al0 , на аноде окисляются ионы AlO3 3– : 4AlO3 3– – 12ē 2Al2O3 + 3O2. Суммарное уравнение процесса: 2Al2O3 4Al + 3O2. Жидкий алюминий собирается на дне электролизера.

Электролиз расплавов оснований

На катоде традиционно восстанавливается металл: Men+ +nē = Me0 На аноде будет окисляться кислород в составе гидроксид-группы: 4OH− −4ē =2H2O + O2 Электролиз расплавов солей 1. Электролиз расплава бескислородной соли: На катоде всегда восстанавливается металл: Men + nē = Me0 На аноде окисляется бескислородный анион: A n– – nē = A0 Например: Электролиз расплава NaCl: 2NaCl = 2Na + Cl2 2.Электролиз расплава кислородсодержащей соли (элемент аниона находится не в высшей степени окисления): На катоде всегда восстанавливается металл: Men++ nē = Me0 На аноде будет окисляться элемент аниона: SO3 2– – 2ē = SO3 0 Например, электролиз расплава сульфита натрия: Na2SO3 = 2Na + SO3 Сера S в сульфите имеет степень окисления +4, при электролизе она окисляется до +6 (SO3). 3.

Электролиз расплава кислородсодержащей соли (элемент аниона в высшей степени окисления): На катоде всегда восстанавливается металл: Men++ nē = Me0 На аноде: т.к

элемент уже в высшей степени окисления, то окисляться будет кислород, например: 2CO3 –2 – 4ē = 2CO2 + O2 Например, электролиз расплава карбоната натрия: 2Na2CO3 = 4Na + 2CO2+ O2 Важно понимать, что эти реакции не идут сами по себе. Их протекание возможно только при действии электрического тока

Электролиз растворов На катоде могут протекать следующие реакции восстановления.

Электролиз правила электролиза
Электролиз расплавов оснований.

Электролиз правила электролиза
Как работает электролиз.

Второй закон Фарадея

Электрохимические эквиваленты различных веществ пропорциональны их молярным массам и обратно пропорциональны числам, выражающим их химическую валентность.

Химическим эквивалентом иона называется отношение молярной массы A{displaystyle A} иона к его валентности z{displaystyle z}. Поэтому электрохимический эквивалент

k = 1F⋅Az{displaystyle k = {1 over F}cdot {A over z}},

где F{displaystyle F} — постоянная Фарадея.

Второй закон Фарадея записывается в следующем виде:

m=M⋅I⋅Δtn⋅F{displaystyle m={frac {M{cdot }I{cdot }{Delta }t}{n{cdot }F}}},
где M{displaystyle M} — молярная масса данного вещества, образовавшегося (однако не обязательно выделившегося — оно могло и вступить в какую-либо реакцию сразу после образования) в результате электролиза, г/моль
I{displaystyle I} — сила тока, пропущенного через вещество или смесь веществ (раствор, расплав), А
Δt{displaystyle {Delta }t} — время, в течение которого проводился электролиз, с
F{displaystyle F} — постоянная Фарадея, Кл·моль−1
n{displaystyle n} — число участвующих в процессе электронов, которое при достаточно больших значениях силы тока равно абсолютной величине заряда иона (и его противоиона), принявшего непосредственное участие в электролизе (окисленного или восстановленного)
Однако это не всегда так; например, при электролизе раствора соли меди(II) может образовываться не только свободная медь, но и ионы меди(I) (при небольшой силе тока).

Особенности электролиза в растворах

Электролиз в водном растворе существенно отличается от расплава. Здесь имеют место 3 конкурирующих процесса: окисление воды с выделением кислорода, окисление аниона и анодное растворение металла. В процессе задействованы ионы воды, электролита и анода. Соответственно, на катоде может происходить восстановление водорода, катионов электролита и металла анода.

Электролиз правила электролиза

Возможность протекания указанных конкурирующих процессов зависит от величины электрических потенциалов системы. Протекать будет только тот процесс, который требует меньше внешней энергии. Следовательно, на катоде будут восстанавливаться катионы, имеющие максимальный электродный потенциал, а на аноде – окисляться анионы с наименьшим потенциалом. Электродный потенциал водорода принят за «0». Для примера, у калия он равен (-2,93 В), натрия – (-2,71 В), свинца (-0,13 В), а у серебра – (+0,8 В).

История

Устройство, изобретенное Иоганном Вильгельмом Риттером для разработки электролиза воды.

Ян Рудольф Дейман и Адриан Паэтс ван Трооствейк использовали в 1789 году электростатическую машину для производства электричества, которое разряжалось на золотых электродах в лейденской банке с водой. В 1800 году Алессандро Вольта изобрел гальваническую батарею , а несколько недель спустя английские ученые Уильям Николсон и Энтони Карлайл использовали ее для электролиза воды. В 1806 году Хамфри Дэви сообщил о результатах обширных экспериментов по электролизу дистиллированной воды, сделав вывод о том, что азотная кислота образуется на аноде из растворенного атмосферного азота. Он использовал высоковольтную батарею и нереактивные электроды и сосуды, такие как конусы золотых электродов, которые дублировались как сосуды, перекрытые влажным асбестом. Когда Зеноб Грамм изобрел машину Грамма в 1869 году, электролиз воды стал дешевым методом производства водорода. Метод промышленного синтеза водорода и кислорода электролизом был разработан Дмитрием Лачиновым в 1888 году.

ПРАВИЛА ЭЛЕКТРОЛИЗА

Электролиз – совокупность окислительно-восстановительных процессов, протекающих в расплавах и растворах электролитов под действием постоянного электрического тока.

Порядок разрядки катионов

  1. На катоде восстанавливаются (разряжаются) катионы.
  2. В первую очередь на катоде разряжаются (восстанавливаются) катионы металлов, стоящих в ряду напряжений металлов после водорода.

   Во вторую очередь в кислотной среде разряжаются катионы водорода:                       2Н+ + 2е →Н2 или вода (в нейтральной и щелочной среде): 2Н2О +2е → Н2+2ОН.

  1. Одновременно с водой могут разряжаться катионы металлов, стоящих в ряду напряжений металлов от алюминия до водорода.
  2. В растворах никогда не разряжаются катионы металлов, стоящих в ряду напряжений металлов до алюминия.

Порядок разрядки анионов.

  1. На аноде окисляются (разряжаются)  анионы

      2.   В первую очередь разряжаются бескислородные анионы: S2- ,I ,Br ,Cl и анионы    органических кислот: 2RCOO — 2e → 2CO2 + R-R.

  1. Во вторую очередь разряжается гидроксид – ион (в щелочной среде):                      4ОН — 4е → О2 + 2Н2О или вода (в кислотной и нейтральной средах):               2Н2О -4е → О2 +4Н+.
  2. В растворе не разряжаются анионы кислородосодержащих кислотных остатков и F

 Используя обобщенный  закон Фарадея можно рассчитать за какое время, при какой силе тока образуется нужное количество вещества:

                          Мэ • I • t               где m – масса образовавшегося при электролизе вещества;

                  m = ————;             Мэ  — эквивалентная масса вещества, равная  М / nе, где

                               F                       М – молярная масса, nе – количество отданных или

                                                        принятых электронов; I – сила тока в амперах,

                                                        t – время в секундах, F – постоянная Фараде  = 96500 Кл/моль.