Электролиз расплавов правила очередности разряда веществ на электродах

Электролиз расплава

Н-р NaCl

1. восстановление ионов Na
на катоде 2. окисление хлорид-ионов на
аноде. При прох.тока изм-ся потенциалы
электродов. Возникает электродная
поляризация. Потенциал катода стан-ся
более отриц-м, анода — положит-м.

Электролиз раствора

Характер окислительных процессов
зависит от материала электрода –
инертные(нерастворимые) и
растворимые(активные).

Процессы:

На аноде: 1. в первую очередь окисляются
простые анионы в порядке возрастания
их потенциалов, не превышающих 1,5В

2. при электролизе водных растворов
содержащих кислотосодержащие анионы
на аноде окисляется вода по реакции
2H2O=O2+4H++4e

А при использовании растворимых анодов
электроны отдает сам анод за счет
окисления Ме.

На катоде: 1. в первую очередь
окисляются катионы Ме, имеющие стандартный
электродный потенциал > чем у водорода

2. катионы Ме с малым станд. потенциалом
от Li до Al
не восстанавливаются, вместо них
восстанавливаются молекулы воды
++2е2

3. катионы Ме, имеющие ст.эл.пот. < чем
у водорода и > чем у Al
восст-ся вместе с водой.

На аноде в первую очередь окисляются
ионы с наименьшим электродным потенциалом,
а на катоде – с наибольшим.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Электролизом называется совокупность процессов, происходящих при прохождении постоянного электри­ческого тока через электрохимическую систему, состоящую из двух электродов и расплава или раствора электролита.

Примером электролиза может служить электролиз расплава хлорида магния. При прохождении тока через расплав MgCl катионы магния под действием электрического поля движутся к отрицательному электроду. Здесь, взаимодействуя с приходящими по внешней цепи электронами, они восстанавливаются Mg2+ + 2е~ = Mg Анионы хлора перемещаются к положительному электроду и, отдавая избыточные электроны, окисляются. При этом первичным процессом является собственно электрохимическая стадия — окис­ление ионов хлора 2Сl = 2Сl + 2e а вторичным — связывание образующихся атомов хлора в моле­кулы: 2С1 = С12 Складывая уравнения процессов, протекающих у электродов, получим суммарное уравнение окислительно-восстановительной ре­акции, происходящей при электролизе расплава MgCl:

Mg2+ + 2Сl= Mg + Cl2 Эта реакция не может протекать самопроизвольно; энергия, не­обходимая для ее осуществления, поступает от внешнего источника тока.

На инертном аноде при электролизе водных растворов щелочей, кислородсодержащих кислот и их солей, а также фтороводорода и фторидов происходит электрохимическое окисление воды с выделением кислорода. В зависимости от рН раствора этот процесс протекает по-разному и может быть записан различными уравнениями.

В случае активного анода число конкурирующих окис­лительных процессов возрастает до трех: электрохимическое окис­ление воды с выделением кислорода, разряд аниона (т. е. его окисление) и электрохимическое окисление металла анода (так называемое анодное растворение металла).

31.Основные законы электролиза. Применение электролиза. Гальваносте­гия и гальванопластика. Электрохимическая обработка металлов. Ак­кумуляторы.

1. Масса образующегося при электролизе вещества пропорцио­нальна количеству прошедшего через раствор электричества.

Этот закон вытекает из сущности электролиза. Как уже гово­рилось, в месте соприкосновения металла с раствором происходит электрохимический процесс—взаимодействие ионов или молекул электролита с электронами металла, так что электролитическое образование вещества является результатом этого процесса. Ясно, что количество вещества, получающегося у электрода, всегда будет пропорционально числу прошедших по цепи электронов, т. е. коли­честву электричества.

2. При электролизе различных химических соединений равные
количества электричества приводят к электрохимическому превра­щению эквивалентных количеств веществ.

Важнейшее применение электролиз находит в металлургической и химической промышлен­ности и в гальванотехнике.

В металлургической промышленности электролизом расплав­ленных соединений и водных растворов получают металлы, а так же производят электролитическое рафинирование — очистку ме­таллов от вредных примесей и извлечение ценных компонентов.

К гальванотехнике относятся гальваностегия и гальванопласти­ка. Процессы гальваностегии представляют собой нанесение путем электролиза на поверхность металлических изделий слоев других металлов для предохранения этих изделий от коррозии, для придания их поверхности твердости, а также в декоративных целях. Из многочисленных применяемых в технике гальванотехни­ческих процессов важнейшими являются хромирование, цинкова­ние и никелирование.

Гальванопластикой называются процессы получения точных металлических копий с рельефных предметов электроосаж­дением металла. Путем гальванопластики изготовляют матрицы для прессования различных изделий (граммофонных пластинок, пуговиц и др.), матрицы для тиснения кожи и бумаги, печатные радиотехнические схемы, типографские клише.

32.Коррозия металлов. Классификация коррозионных процессов по меха­низму протекания и по характеру коррозионных поражений. Химиче­ская и электрохимическая коррозия. Коррозия под действием блуж­дающих токов.

Металлические материалы — металлы и сплавы на основе металлов, — приходя в соприкосновение с ок­ружающей их средой (газообразной или жидкой), подвергаются с той или иной скоростью разрушению. Причина этого разрушения лежит в химическом взаимодействии: металлы вступают в окис­лительно-восстановительные реакции с веществами, находящимися в окружающей среде, и окисляются. Самопроизвольное разрушение металлических материалов, про­исходящее под химическим воздействием окружающей среды, на­зывается коррозией (от латинского «corrodere» — разъедать).

Атмосферная к о р р о з и я — коррозия во влажном воз­духе при обычных температурах. Поверхность металла, находяще­гося во влажном воздухе, бывает покрыта пленкой воды, содержа­щей различные газы, и в первую очередь — кислород. Скорость атмосферной коррозии зависит от условий. В частности, на нее влияет влажность воздуха и содержание в нем газов, образующих с водою кислоты (СО2, SO2). Большое значение имеет также состояние поверхности металла: скорость атмосферной коррозии резко возрастает при наличии на поверхности шероховатостей, микрощелей, пор, зазоров и других мест, облегчающих конденса­цию влаги.

Коррозия в грунте* приводит к разрушению проложен­ных под землей трубопроводов, оболочек кабелей, деталей строи­тельных сооружений. Металл в этих условиях соприкасается с влагой грунта, содержащей растворенный воздух. В зависимости от состава грунтовых вод, а также от структуры и минералогиче­ского состава грунта, скорость этого вида коррозии может быть весьма различной.

Коррозия при неравномерной аэрации** — наблю­дается в тех случаях, когда деталь или конструкция находится в растворе, но доступ растворенного кислорода к различным ее частям неодинаков. При этом те части металла, доступ кислорода к которым минимален, корродируют значительно сильнее тех ча­стей, доступ кислорода к которым больше. Такое неравномерное распределение коррозии объясняется следующим образом. При восстановлении кислорода О2 + 4Н+ + 4е~ = 2Н2О расходуются ионы водорода и раствор, следовательно, несколько подщелачивается. Металлы, и в частности железо, при подщелачивании раствора легче переходят в пассивное состояние. Поэтому аэрируемые участки металла переходят в пассивное состояние и скорость коррозии на них снижается. На неаэрируемых участках не происходит пассивирования — здесь протекает процесс окисле­ния металла, приводящий к переходу его ионов в раствор:

М = Мг+ + ге~ Таким образом, при неравномерной аэрации металла осуще­ствляется пространственное разделение окислительно-восстанови­тельной реакции: восстановление кислорода протекает на более аэрируемых участках, а окисление металла — на менее аэрируе­мых участках поверхности. Локализация процесса окисления при­водит к местной коррози и — интенсивному разрушению ме­талла на отдельных участках. Местная коррозия приводит к появ­лению на поверхности металла углублений («язв»), которые со временем могут превращаться в сквозные отверстия. Иногда раз­витие язв трудно обнаружить, например, из-за остатков окалины на поверхности металла. Этот вид коррозии особенно опасен для обшивки судов, для промышленной химической аппаратуры и в ряде других случаев.

Контактная коррозия может протекать, когда два ме­талла с различными потенциалами соприкасаются друг с другом либо в водной среде, либо при наличии влаги, конденсирующейся из воздуха. Так же, как и в рассмотренном выше случае значи­тельных включений, металлы оказывают друг на друга поляризую­щее действие; металл с меньшим потенциалом поляризуется анодно, и скорость его коррозии вблизи места контакта резко воз­растает.

33.Методы защиты металлов от коррозии. Металлические защитные по­крытия (анодные, катодные). Неметаллические покрытия. Электрохи­мические методы защиты от коррозии.

Для предупреждения коррозии и защиты от нее применяются разнообразные методы. К важнейшим из них относятся следую­щие:

1) применение химически стойких сплавов; 2защита поверхности металла покрытиями; 3 обработка коррозионной среды; 4 электрохимические методы.

В качестве металлов для покрытия обычно применяют метал­лы, образующие на своей поверхности защитные пленки. Как уже говорилось, к таким металлам относятся хром, никель, цинк, кад­мий, алюминий, олово и некоторые другие.

К неметаллическим относятся покрытия лаками, красками, эмалями, фенолоформальдегидными и другими смолами. Для дли­тельной защиты от атмосферной коррозии металлических соору­жений, деталей, машин, приборов чаще всего применяются лако­красочные покрытия.

К электрохимическим методам защиты металлов относятся катодная защита и метод протекторов. При катодной защите защищаемая конструкция или деталь присоединяется к отрица­тельному полюсу источника электрической энергии и становится катодом. В качестве анодов используются куски железа. При над­лежащей силе тока в цепи на защищаемом изделии происходит восстановление окислителя, процесс же окисления претерпевает вещество анода.

Метод протекторов осуществляется присоединением к за­щищаемому металлу большого листа, изготовленного из другого, более активного металла—-протектора. В качестве протектора при защите стальных изделий обычно применяют цинк или сплавы на основе магния. При хорошем контакте между металлами защищае­мый металл (железо) и металл протектора (например, цинк) оказывают друг на друга поляризующее действие. Согласно взаим­ному положению этих металлов в ряду напряжений, железо поля­ризуется катодно, а цинк — анодно. В результате этого на железе идет процесс восстановления того окислителя , который присутствует в воде (обычно растворенный кислород), а цинк окисляется. И протекторы, и катодная защита применимы в средах, хорошо проводящих электрический ток, например в морской воде. В част­ности, протекторы широко применяются для защиты подводных частей морских судов. Ясно, что убытки, вызванные коррозией корпуса морского судна и связанные с его простоем и ремонтом, очень велики и во много раз превышают стоимость протекторов.

34.Общие свойства металлов. Металлическая связь. Тепло- и электропро­водность. Физико-механические и химические свойства металлов.

Физические и химические свойства металлов. Электронное строение металлов, изоляторов и полупроводников. Металлы обла­дают рядом общих свойств. К общим физическим свойствам ме­таллов относятся их высокая электрическая проводимость и тепло­проводность, пластичность, т. е. способность подвергаться деформации при обычных и при повышенных температурах, не разрушаясь. Пластичность металлов имеет очень большое практи­ческое значение. Благодаря этому свойству металлы поддаются ковке, прокатке, вытягиванию в проволоку (волочению), штам­повке.

Кристаллическое строение металлов. Кристаллическое строение металлов изучается различными методами. Их можно разделить на две группы. К первой принадлежат методы изучения внутреннего строения кристаллов, ко второй — методы изучения их внешних форм.

Внутреннее строение кристаллов изучается глазным образом с помощью рентгеноструктурного анализа. По его дан­ным для всех металлов установлены типы и параметры кристал­лических решеток.

Электролиз — это окислительно-восстановительная реакция, которая протекает на электродах и основана на пропускании электрического тока через раствор или расплав.

Не менее важными участниками электролиза являются электроды: катод и анод. Если вы вдруг забыли, что такое катод и анод в химии, напомним.

Катод — это отрицательно заряженный электрод, который притягивает положительно заряженные ионы (катионы). А анод — это положительно заряженный электрод, который притягивает к себе отрицательно заряженные ионы (анионы). Таким образом, на катоде всегда происходит процесс восстановления, а на аноде всегда происходит процесс окисления.

Электроды бывают растворимые и инертные. Растворимые изготавливаются из металлов, например, меди и подвергаются химическим превращениям в ходе электролиза. А вот инертные или нерастворимые электроды не подвергаются химическим превращениям и остаются в неизменном виде как до реакции, так и после нее. Как правило, такие электроды изготавливают из графита или платины.

Виды электролиза

Различают два вида электролиза:

  1. Электролиз расплава.

  2. Электролиз водного раствора.

Прежде чем мы рассмотрим каждый процесс отдельно, давай познакомимся с общими для двух видов процессами на электродах.

Электролиз расплава

Рассмотрим электролиз расплава пищевой соли — хлорида натрия. При сильном нагревании кристаллический твердый хлорид натрия плавится. Полученный расплав содержит подвижные ионы хлора и натрия, освободившиеся из кристаллической решетки, и проводит электрический ток.

К: 2Na+ + 2e = 2Na0

А+: 2Cl − 2e = Cl2

Суммарное уравнение электролиза:

При опускании в расплав угольных (инертных) электродов, присоединенных к источнику тока, ионы приобретают направленное движение: катионы движутся к отрицательно заряженному электроду (катоду), анионы — к положительно заряженному электроду (аноду) и отдают электроны.

Электролиз NaCl

Теперь давайте рассмотрим электролиз расплава гидроксида калия.

Электролиз расплава гидроксида калия

На катоде происходит восстановление калия за счет принятия электронов. А на аноде протекает более сложная реакция. Гидроксогруппы отдают свой электрон и становятся нейтральными, но такое состояние для них крайне невыгодно, так как неустойчиво, и они объединяются в группы, чтобы потом разложиться с выделением газообразного кислорода и воды

Итог электролиза расплава — металлический калий на катоде, газообразный кислород и пары воды на аноде.

Электролиз раствора

Основным отличием водного раствора от расплава является присутствие молекул воды и ионов H+ и OH как продуктов диссоциации воды. В связи с этим возле катода и анода скапливаются ионы, которые конкурируют как друг с другом, так и с молекулами воды. Рассмотрим электролиз на примере водного раствора KF:

К: 4H2O + 4e = 2H20 + 4OH

А+: 2H2O − 4e = O2 + 4H+

Суммарное уравнение электролиза:

Электролиз KF

Как видно, ни калий, ни фтор не фигурируют в продуктах электролиза. Почему так происходит?

Наиболее активные металлы — сильные восстановители. Калий — как раз такой металл, поэтому обратный процесс восстановления активных металлов из соединений осуществить сложно. При электролизе водных растворов солей активных металлов на катоде протекает восстановление не катионов этих металлов, а воды с образованием водорода.

Разберем порядок восстановления катионов металлов на катоде в зависимости от их активности.

Последовательность разрядки катионов зависит от положения металла в электрохимическом ряду напряжения.

Электрохимический ряд напряжений металлов

  1. Если у катода накапливаются молекулы воды и катионы металла, который находится в ряду напряжения после водорода, то восстанавливаются ионы металла.

  2. Если у катода накапливаются молекулы воды и катионы металла, который стоит в начале ряда напряжения от лития до алюминия включительно, то восстанавливаются ионы водорода из молекул воды. Катионы металла не восстанавливаются, остаются в растворе.

  3. Если у катода накапливаются молекулы воды и катионы металла, который расположен в ряду напряжения между алюминием и водородом, то восстанавливаются и ионы металла, и частично ионы водорода из молекул воды.

  4. Если в растворе находится смесь катионов разных металлов, то сначала восстанавливаются катионы менее активного металла.

  5. При электролизе раствора кислоты на катоде восстанавливаются катионы водорода до газообразного водорода.

Для удобства мы собрали информацию об электролизе в таблице:

Катодные процессы при электролизе растворов солей

Теперь разберемся, что происходит с анионами в водных растворах при электролизе. Для начала познакомимся с последовательностью восстановления анионов на аноде:

Восстановительная активность анионов

Чем меньше выражена восстановительная активность, тем хуже анионы могут окисляться на аноде. К тому же процесс на аноде зависит от материала анода и от природы аниона.

Если анод инертный или нерастворимый, то на нем протекают следующие реакции:

  1. При электролизе растворов солей бескислородных кислот (кроме фторидов!), на аноде происходит процесс окисления аниона.

  2. При электролизе растворов солей кислородсодержащих кислот и фторидов на аноде выделяется газообразный кислород вследствие окисления молекул воды. Анион при этом не окисляется, оставаясь в растворе.

  3. При электролизе растворов щелочей происходит окисление гидроксид-ионов.

Если анод растворимый, то на нем всегда происходит окисление металла анода — независимо от природы аниона.

Процесс на аноде

Исключением является электролиз солей карбоновых кислот. Таблица выше не описывает происходящее на аноде. Давайте рассмотрим, что же там происходит.

В результате электролиза водных растворов солей щелочных металлов карбоновых кислот происходит образование углеводородов вследствие рекомбинации углеводородных радикалов.

В общем виде электролиз солей карбоновых кислот можно записать так:

Электролиз солей карбоновых кислот

На катоде образуется газообразный водород, а на аноде — углекислый газ, углеводород, полученный удвоением радикала. В катодном пространстве накапливается щелочь.

В случае разделения катодного и анодного пространства углекислый газ реагирует со щелочью с образованием гидрокарбоната.

Применение электролиза

А теперь самое главное: зачем вообще нужен электролиз? Рассмотрим применение этого вида ОВР:

  1. С помощью электролиза расплавов природных соединений в металлургической промышленности получают активные металлы (калий, натрий, бериллий, кальций, барий). С помощью электролиза растворов солей — цинк, кадмий, кобальт и другие.

  2. В химической промышленности электролиз используют для получения фтора, хлора, водорода, кислорода, щелочей, бертолетовой соли и других веществ.

  3. Электролиз с растворимым анодом используют для нанесения металлических покрытий (из хрома, золота, никеля, серебра), что предохраняет металлические изделия от коррозии и придает им декоративный вид.

Вопросы для самопроверки

1. Выберите верное продолжение фразы «катод — это…»:

  1. Положительно заряженный электрод, к которому притягиваются положительно заряженные ионы.

  2. Положительно заряженный электрод, к которому притягиваются отрицательно заряженные ионы.

  3. Отрицательно заряженный электрод, к которому притягиваются положительно заряженные ионы.

  4. Отрицательно заряженный электрод, к которому притягиваются отрицательно заряженные ионы.

2. Продолжите фразу «электролиз — это…»:

  1. ОВР с применением тока.

  2. Реакция без изменения степеней окисления с применением тока.

  3. ОВР с применением катализаторов.

  4. Обменная реакция.

3. Как заряжен анион?

  1. Положительно.

  2. Отрицательно.

  3. Нейтрально.

  4. Не имеет заряда.

4. Чем отличается электролиз раствора от электролиза расплава?

  1. Ничем.

  2. В расплаве плавится твердое.

  3. Присутствием молекул воды и продуктов ее диссоциации.

5. Если металл стоит в ряду активности металлов между алюминием и водородом, что выделится на катоде?

  1. Этот металл.

  2. Водород.

  3. Металл и водород.

  4. Оксид металла.

При электролиза водного раствора фторида лития что на аноде выделится?

  1. Фтор.

  2. Водород.

  3. Кислород.

  4. Вода.

Ответы

  1. c

  2. a

  3. b

  4. c

  5. c

  6. с

Электролизом называется совокупность процессов, происходящих при прохождении постоянного электрического тока через электрохимическую систему, состоящую из двух электродов и расплава или раствора электролита.

При прохождении тока через расплав катионы под действием электрического поля движутся к отрицательному электроду. Здесь, взаимодействуя с приходящими по внешней цепи электронами, они восстанавливаются

Men+ + ne → Me

Анионы перемещаются к положительному электроду и, отдавая избыточные электроны, окисляются.

При сложении уравнений процессов, протекающих у электродов, получается суммарное уравнение окислительно-восстановительнои̌ реакции, происходящей при электролизе расплава.

Эта реакция не может протекать самопроизвольно; энергия, необходимая для её осуществления, поступает от внешнᴇᴦο источника тока.

Как и в случае химического источника электрической энергии, электрод, на котором происходит восстановление, называется катодом; электрод, на котором происходит окисление, называется анодом.
Понятие и виды, 2018.
Но при электролизе катод заряжен отрицательно, а анод ‑ положительно, то есть распределение знаков заряда электродов противоположно тому, которое имеется при работе гальванического элемента. Причина ϶того состоит в том, что процессы, протекающие при электролизе, в принципе обратны процессам, идущим при работе гальванического элемента. При электролизе химическая реакция осуществляется за счёт энергии электрического тока, подводимой извне, в то время как при работе гальванического элемента энергия самопроизвольно протекающей в нем химической реакции превращается в электрическую энергию.

При рассмотрении электролиза водных растворов нельзя упускать из виду, что, кроме ионов электролита, во всяком водном растворе имеются ещё ионы, являющиеся продуктами диссоциации воды – Н+ и ОН-. В электрическом поле ионы водорода перемещаются к катоду, а ионы ОН- ‑ к аноду. Таким образом, у катода могут разряжаться как катионы электролита, так и катионы водорода. Аналогично, у анода может происходить разряд как анионов электролита, так и гидроксид-ионов. Кроме того, молекулы воды аналогичным образом могут подвергаться электрохимическому окислению или восстановлению.

Какие именно электрохимические процессы будут протекать у электродов при электролизе, прежде всᴇᴦο будет зависеть от относительных значений электродных потенциалов соответствующих электрохимических систем. Из нескольких возможных процессов будет протекать тот, осуществление которого сопряжено с минимальнои̌ затратой энергии. Это означает, что на катоде будут восстанавливаться окисленные формы электрохимических систем, имеющих наибольший электродный потенциал, а на аноде будут окисляться восстановленные формы систем с наименьшим электродным потенциалом.
Понятие и виды, 2018.

Электрохимическое выделение водорода из кислых растворов происходит вследствие разряда ионов водорода. В случае же нейтральных или щелочных сред оно является результатом электрохимического восстановления воды:

2Н2О + 2е = Н2 + 2ОН-

При рассмотрении анодных процессов следует иметь в виду, что материал анода в ходе электролиза может окисляться. В связи с этим различают электролиз с инертным анодом и электролиз с активным анодом.
Понятие и виды, 2018.
Инертным называется анод, материал которого не претерпевает окисления в ходе электролиза. Активным называется анод, материал которого может окисляться в ходе электролиза. В качестве материалов для инертных анодов чаще всᴇᴦο применяют графит, уголь, платину. На инертном аноде при электролизе водных растворов щелочей, кислородсодержащих кислот и их солей, а аналогичным образом фтороводорода и фторидов происходит электрохимическое окисление воды с выделением кислорода. Кислородсодержащие анионы или не способны окисляться, или их окисление происходит при очень высоких потенциалах. В зависимости от рН раствора ϶тот процесс протекает по-разному и должна быть записан различными уравнениями. В щелочнои̌ среде уравнение имеет вид

4ОН- = О2 + 2Н2О + 4е

а в кислой или нейтральнои̌

2Н2О = О2 + 4Н+ + 4е

При электролизе водных растворов бескислородных кислот и их солей (кроме HF и фторидов) у анода разряжаются анионы.

В случае активного анода число конкурирующих окислительных процессов возрастает до трех: электрохимическое окисление воды с выделением кислорода, разряд аниона (то есть ᴇᴦο окисление) и электрохимическое окисление металла анода (так называемое анодное растворение металла). Из этих возможных процессов будет идти тот, который энергетически наиболее выгоден. Если металл анода расположен в ряду стандартных потенциалов левее обеих других электрохимических систем, то будет наблюдаться анодное растворение металла. В противном случае, будет идти выделение кислорода или разряд аниона.