Как смешанную дробь представить в виде неправильной дроби правило

    Само слово — дробь означает, что число дробное, оно меньше целого (как минимум единицы).

    Следовательно, необходимо выделить целое число из числителя. Например, число 30/4 — дробь неправильная, поскольку 30 больше, чем 4. Значит, нужно просто разделить 30 на 4 и получим число до запятой — 7, его то и ставим перед дробью. Умножим 7 на 4 и вычтем это число из 30 — получится 2 — оно будет в числителе дроби. Итог — 7 2/4, сокращаем — 7 1/2. В вашем примере, ответ — 2 3/4.

    Для того необходимо чтслитель: на знаменатель.

    То целое, что получилось — пишите в числитель. Знаменатель тот, что был. Когда поделите — записывайте в целую часть.

    11:4=2 (3 остаток).

    Получаем правил-ую дробь: 2 — целых 34

    Чтобы сделать из неправильной дроби правильную, нужно выявить целые части и отнять их из неправильной дроби. В нашем случае неправильная дробь 11/4. Целых частей будет две (2). Вычитаем их и получаем правильную дробь: две целых три четвртых (2 целых 3/4).

    Неправильную дробь, в нашем случае 11/4 нужно перевести в правильную, т.е. в этом случае смешанную дробь. Если по-простому, то дробь неправильная, потому что в ней помимо дроби есть и целое число. Это как стоит в холодильнике тортик непочатый, хоть и порезанный, а на столе — осталось несколько кусочков от второго. Когда говорим об 11/4, то мы уже не знаем о двух целых тортах, видим лишь одиннадцать крупных кусков. 11 разделили на 4, получили 2, а остаток 11-8=3. Итак, 2 целых 3/4, теперь дробь правильная, в ней числитель поменьше знаменателя будет, но смешанная, так как без целых единиц расчет не обошелся.

    Чтобы из неправильной дроби сделать правильную, надо числитель разделить на знаменатель. Полученное целое число выносим перед дробью, а остаток вписываем в числитель. Знаменатель не изменяется.

    Например: дробь 11/4 — неправильная, где числитель равен 11, а знаменатель — 4.

    Сначала 11 делим на 4, получим 2 целых и 3 остаток. Выносим 2 перед дробью, а остаток 3 пишем в числитель 3/4. Таким образом дробь становится правильной — 2 целых и 3/4.

    У неправильной дроби знаменатель оказывается меньше числителя, что говорит о том, что в этой дроби имеются целые части, которые можно выделить и получить правильную дробь с целым числом.

    Самый простой способ поделить числитель на знаменатель. Полученное целое число ставим слева от дроби, а остаток пишем в числитель, знаменатель остается тем же самым.

    Например 11/4. Делим 11 на 4 и получаем 2 и остаток 3. Двойка -это число, которое ставим рядом с дробью, а тройку пишем в числитель дроби. Выходит 2 и 3/4.

    Чтобы ответить на этот несложный вопрос, можно решить такую же несложную задачку:

    Петя и Валя пришли в компанию сверстников. Всех вместе их стало 11. У Вали были с собой яблоки (но не много) и чтобы угостить всех Петя разрезал каждое на четыре части и раздал. Хватило всем и даже пять кусочков осталось.

    Сколько яблок раздал Петя и сколько яблок осталось? Сколько их было всего?

    А можно записать это математически

    11 кусочков яблока это в нашем случае 11/4 — получили неправильную дробь, так как числитель больше знаменателя.

    Чтобы выделить целую часть
    (преобразовать
    неправильную дробь в правильную), нужно числитель разделить на знаменатель
    , неполное частное (в нашем случае это 2) записать слева, остаток (3)оставить в числителе а знаменатель не трогать.

    В результате получим 11/4 = 11:4 = 2 3/4
    яблока раздал Петя.

    Аналогично 5/4 = 1 1/4 яблок осталось.

    (11+5)/4 = 16/4 = 4 яблока принесла Валя

Дробь представляет собой число, которое состоит из одной или нескольких долей единицы. В математике существует три вида дробей: обыкновенные, смешанные и десятичные.

  • Обыкновенные дроби

Обыкновенная дробь записывается как соотношение, в котором в числителе отражается, сколько взято частей от числа, а знаменатель показывает, на сколько частей разделена единица. Если числитель меньше знаменателя, то перед нами правильная дробь.Например: ½, 3/5, 8/9.

Если числитель равен знаменателю или больше его, то мы имеем дело с неправильной дробью. Например: 5/5, 9/4, 5/2 При делении числителя может получиться конечное число. Например, 40/8 = 5. Следовательно, любое целое число может быть записано в виде обыкновенной неправильной дроби или ряда таких дробей. Рассмотрим записи одного и того же числа в виде ряда различных .

  • Смешанные дроби

В общем виде смешанная дробь может быть представлена формулой:

Таким образом, смешанная дробь записывается как целое число и обыкновенная правильная дробь, а под такой записью понимают сумму целого и его дробной части.

  • Десятичные дроби

Десятичная дробь – это особая разновидность дроби, у которой знаменатель может быть представлен как степень числа 10. Существуют бесконечные и конечные десятичные дроби. При записи этой разновидности дроби сначала указывается целая часть, затем через разделитель (точку или запятую) фиксируется дробная часть.

Запись дробной части всегда определяется ее размерностью. Десятичная запись выглядит следующим образом:

Правила перевода между различными видами дробей

  • Перевод смешанной дроби в обыкновенную

Смешанную дробь можно перевести только в неправильную. Для перевода необходимо целую часть привести и тому же знаменателю, что и дробную. В общем виде это будет выглядеть следующим образом:
Рассмотрим использование этого правила на конкретных примерах:

  • Перевод обыкновенной дроби в смешанную

Неправильную обыкновенную дробь можно превратить в смешанную путем простого деления, в результате которого находится целая часть и остаток (дробная часть).

Для примера переведем дробь 439/31 в смешанную:
​​

  • Перевод обыкновенной дроби

В некоторых случаях перевести дробь в десятичную достаточно просто. В этом случае применяется основное свойство дроби, числитель и знаменатель умножаются на одно и то же числу, для того, чтобы привести делитель к степени числа 10.

Например:

В некоторых случаях может понадобиться найти частное путем деления уголком или с помощью калькулятора. А некоторые дроби невозможно привести к конечной десятичной дроби. Например, дробь 1/3 при делении никогда не даст конечный результат.

В этом материале мы разберем такое понятие, как смешанные числа. Начнем, как всегда, с определения и небольших примеров, потом поясним связь смешанных чисел и неправильных дробей. После этого мы изучим, как правильно выделять целую часть из дроби и получать в результате целое число.

Понятие смешанного числа

Если мы возьмем сумму n + a b , где значением n может быть любое натуральное число, а a b представляет из себя правильную обыкновенную дробь, то мы можем записать то же самое, не используя плюс: n a b . Возьмем конкретные числа для ясности: так, 28 + 5 7 – это то же самое, что и 28 5 7 . Запись дроби рядом с целым числом принято называть смешанным числом.

Определение 1

Смешанное число
представляет собой такое число, которое равно сумме натурального числа n с правильной обыкновенной дробью a b . В таком случае n является целой частью числа, а a b – его дробной частью.

Из определения следует, что любое смешанное число равно тому, что получится в результате сложения его целой и дробной части. Таким образом, будет выполняться равенство n a b = n + a b .

Его также можно записать в виде n + a b = n a b .

Какие можно привести примеры смешанных чисел? Так, к ним относится 5 1 8 , при этом пятерка – это его целая часть, а одна восьмая – дробная. Еще примеры: 1 1 2 , 234 34 53 , 34000 6 25 .

Выше мы писали, что в дробной части смешанного числа должна стоять только правильная дробь. Иногда можно встретить записи вида 5 22 3 , 75 7 2 . Они не являются смешанными числами, т.к. их дробная часть неправильная. Их нужно понимать как сумму целой и дробной части. Такие числа можно привести к стандартному виду записи смешанных чисел, выделив целую часть из неправильной дроби и добавив ее к 5 и 75 в этих примерах соответственно.

Числа вида 0 3 14 также не относятся к смешанным. Здесь не выполняется первая часть условия: целая часть должна быть представлена только натуральным числом, а нуль им не является.

Как соотносятся между собой неправильные дроби и смешанные числа

Эту связь проще всего проследить на конкретном примере.

Пример 1

Возьмем целый торт и еще три четверти такого же. Согласно правилам сложения, у нас на столе находится 1 + 3 4 торта. Эту сумму можно представить в виде смешанного числа как 1 3 4 торта. Если мы возьмем целый торт и тоже разрежем его на четыре равные части, то у нас на столе будет 7 4 торта. Очевидно, что от разрезания количество не увеличилось, и 1 3 4 = 7 4 .

Наш пример доказывает, что в виде смешанного числа можно представить любую неправильную дробь.

Вернемся к нашим 7 4 торта, оставшимся на столе. Сложим из его кусочков один торт обратно (1 + 3 4) . У нас опять будет 1 3 4 .

Ответ:
7 4 = 1 3 4 .

Мы поняли, как приводить неправильную дробь к виду смешанного числа. Если в числителе неправильной дроби стоит такое число, которое можно разделить на знаменатель без остатка, то можно сделать это, и тогда наша неправильная дробь станет натуральным числом.

Пример 2

Например,

8 4 = 2 , так как 8: 4 = 2 .

Как перевести смешанное число в неправильную дробь

Чтобы успешно решать задачи, полезно уметь производить и обратное действие, то есть делать из смешанных чисел неправильные дроби. В этом пункте мы разберем, как правильно это сделать.

Для этого нужно воспроизвести следующую последовательность действий:

1. Для начала представляем имеющееся смешанное число n a b как сумму целой и дробной части. Получается n + a b

3.После этого выполняем уже знакомое действие – складываем две обыкновенные дроби n 1 и a b . Получившаяся в результате неправильная дробь и будет равной смешанному числу, данному в условии.

Разберем это действие на конкретном примере.

Пример 3

Представьте 5 3 7 в виде неправильной дроби.

Решение

Выполняем последовательно шаги указанного выше алгоритма. Наше число 5 3 7 – это сумма целой и дробной части, то есть 5 + 3 7 . Теперь пятерку запишем в виде 5 1 . У нас получилась сумма 5 1 + 3 7 .

Последний шаг – сложение дробей, имеющих разные знаменатели:

5 1 + 3 7 = 35 7 + 3 7 = 38 7

Все решение к краткой форме можно записать как 5 3 7 = 5 + 3 7 = 5 1 + 3 7 = 35 7 + 3 7 = 38 7 .

Ответ:
5 3 7 = 38 7 .

Таким образом, с помощью указанной выше цепочки действий мы можем перевести любое смешанное число n a b в неправильную дробь. У нас получилась формула n a b = n · b + a b , которую мы и будем брать для решения дальнейших задач.

Пример 4

Представьте 15 2 5 в виде неправильной дроби.

Решение

Возьмем указанную формулу и подставим в нее нужные значения. У нас n = 15 , a = 2 , b = 5 , следовательно, 15 2 5 = 15 · 5 + 2 5 = 77 5 .

Ответ:
15 2 5 = 77 5 .

Обычно мы не указываем неправильную дробь в качестве итогового ответа. Принято доводить вычисления до конца и заменять ее либо натуральным числом (разделив числитель на знаменатель), либо смешанным числом. Как правило, первый способ используется, когда разделить числитель на знаменатель можно без остатка, а второй – если такое действие невозможно.

Когда мы выделяем из неправильной дроби целую часть, мы просто заменяем ее равным смешанным числом.

Разберем, как именно это делается.

Определение 2

Приведем доказательство этого утверждения.

Нам требуется пояснить, почему q r b = a b . Для этого смешанное число q r b надо представить в виде неправильной дроби, выполнив все шаги алгоритма из предыдущего пункта. Поскольку – неполное частное, а r – остаток от деления a на b , то должно выполняться равенство a = b · q + r .

Таким образом, q · b + r b = a b поэтому q r b = a b . Это и есть доказательство нашего утверждения. Подытожим:

Определение 3

Выделение целой части из неправильной дроби a b осуществляется таким образом:

1) производим деление a на b с остатком и записываем неполное частное q и остаток r отдельно.

2) Записываем результаты в виде q r b . Это и есть наше смешанное число, равное исходной неправильной дроби.

Пример 5

Представьте 107 4 в виде смешанного числа.

Решение

Делим 104 на 7 столбиком:

Деление числителя a = 118 на знаменатель b = 7 дает нам в итоге неполное частное q = 16 и остаток r = 6 .

В итоге мы получаем, что неправильная дробь 118 7 равна смешанному числу q r b = 16 6 7 .

Ответ:
118 7 = 16 6 7 .

Нам осталось посмотреть, как заменить неправильную дробь натуральным числом (при условии, что ее числитель делится на знаменатель без остатка).

Для этого вспомним, какая связь существует между обыкновенными дробями и делением. Из этого можно вывести равенства: a b = a: b = c . Получается, что неправильную дробь a b можно заменить натуральным числом c .

Пример 6

Например, если в ответе получилась неправильная дробь 27 3 , то можем записать вместо нее 9 , поскольку 27 3 = 27: 3 = 9 .

Ответ:
27 3 = 9 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

    Перевести неправильную дробь в правильную можно путем деления числителя такой дроби на знаменатель — таким образом мы получим правильную дробь. По другому неправильную дробь можно записать в виде простого десятичного числа.

    неправильная дробь — дробь, у которой числитель больше знаменателя. правильная — та дробь, у которой, соответственно, числитель меньше знаменателя. неправильную дробь превратить в правильную никак нельзя, но зато ее можно представить в виде смешанного числа, состоящего из двух частей (одна часть будет целым числом, а другая — как раз правильной дробью).

    например 5/2=2+1/2 (только пишут дробь обычно сразу после целого числа без знака quot;плюсquot;)

    здесь нужно числитель неправильной дроби разделить на знаменатель. записываем целую часть от деления (в нашем случае 2). затем остаток от деления (то есть 1) записываем как числитель дроби, которую мы записываем рядом с двойкой.

    Из школьного курса математики мы знаем. что неправильная дробь представляет собой дробь у которой числитель больше, чем ее знаменатель. Чтобы перевести ее в правильную дробь, нужно числитель такой дроби разделить на ее знаменатель. Все очень просто, таким образом она станет правильной, либо десятичной дробью.

    Неправильная дробь например: 9/5 выделим у нее целую часть это будет: 1
    4/5 теперь она немного похоже на правильную только с целой частью это единица.

    Можно и превратить ее в десятичную дробь в нашем случае будет 1.8

    Чтобы решить поставленную задачу, сначала нужно четко уяснить для себя, что такое правильная дробь, а что такое неправильная.

    Начнем с того, что утверждение

    верно далеко не для всех чисел на числовой оси.

    числитель равен (-10), знаменатель равен (-4)

    аналогичное утверждение

    верно также не всегда

    числитель равен 2, знаменатель равен (-3)

    Неправильную дробь можно записать с помощью суммы целого числа и правильной дроби (смешанной дроби) и для этого нужно:

    разделить числитель на знаменатель, полученное целое число записать в целой части, остаток в числителе, знаменатель оставить без изменений

    в числителе (-15), в знаменателе 2, минус вынесем за пределы дроби — (15/2), 15 разделим на 2, целое число 7 ставим в целую часть дроби, остаток от деления 1 запишем в числителе, а знаменатель 2 оставим без изменений.

    Для того чтобы преобразовать неправильную дробь в правильную для начала необходимо сказать:

    У неправильной дроби числитель (верхнее число в дроби) больше знаменателя ил равна ему;

    У правильной дроби все наоборот.

    Процесс преобразования разберем на примере дроби 260/7:

    1) Сначала делим 260 на 7, получаем число 37,14..

    2) Число 37 будет стоять впереди дроби как целое число

    3) Теперь 37 * 7 = 259

    4) От числителя отнимаем получившееся число 260 — 259 = 1 — это число и будет в числители нашей правильной дроби.

    5) При записи новой дроби знаменатель остается неизменной. В данном случае это 7. Правильная дробь будет выглядит следующим образом:

    Проверка преобразованной дроби:

    Целое число умножаем на знаменатель и прибавляем числитель 37 * 7 + 1 = 260.

    Правильной дробью называется такая дробь, у которой знаменатель больше числителя. Это говорит о том, что эта дробь показывает какую-то часть целого. Например дробь 1/2 говорит о том что у нас есть половина например арбуза, а дробь 7/9 — что у нас осталось семь кусочков арбуза разрезанного на 9 частей. Две части кто-то съел.

    Если же дробь неправильная, то есть числитель больше знаменателя, то совершенно непонятно, какая у нас часть целого, но разрезанного арбуза и сколько еще целых арбузов в наличии. Поэтому приходится перевести неправильную дробь в правильную. при этом мы получим какое-то целое число и остаток — именно правильную дробь.

    Для перевода делим числитель на знаменатель в столбик. Пример: 7/4. Семь на четыре дает единицу и остаток 3/4. Вот мы и перевели дробь в правильную — ответ 1 и 3/4.

    Неправильной дробью
    называют такую дробь, у которой числитель больше знаменателя
    . Значит правильная дробь та, у которой числитель меньше знаменателя. Чтобы превратить неправильную дробь в правильную можно представить в виде десятичного числа. Например 17/8 можно записать так: 2,125. Или записать так: 2 1/8.

    Правильной дробью принято считать такую, у которой знаменатель выше числителя. Для того чтобы неправильную дробь перевести в правильную, надо разделить числитель неправильной дроби на ее знаменатель, результатом будет число с остатком.

    Например 4 целых и три одиннадцатых, мы 4 умножаем на 11 и +3 , потом мы делим на 11 , получается 44 +3 и делим на 11 , и получим дробь 47/11 . Неправильная дробь это когда есть целое число например 5,10 , то есть пять целых и 10/100 , пять мы умножаем 100 и +10 , получается 10/500 . Так же если например 6,6 , тут проще, 6 умножаем на 6 и +6 получается 12/6 , сокращаем на два, получается шесть третьих, шесть третьих мы сокращаем на три получается две первых, два делим на один получается два. То есть 6,6 =2.

В этой статье мы поговорим про смешанные числа
. Сначала дадим определение смешанных чисел и приведем примеры. Дальше остановимся на связи между смешанными числами и неправильными дробями. После этого покажем, как перевести смешанное число в неправильную дробь. Наконец, изучим обратный процесс, который называется выделением целой части из неправильной дроби.

Навигация по странице.

Смешанные числа, определение, примеры

Математики договорились, что сумму n+a/b
, где n
— натуральное число , a/b
– правильная обыкновенная дробь , можно записывать без знака сложения в виде . Например, сумму 28+5/7
можно кратко записать как . Такую запись назвали смешанной, а число, которое соответствует данной смешанной записи, назвали смешанным числом.

Так мы подошли к определению смешанного числа.

Определение.

Смешанное число
– это число, равное сумме натурального числа n
и правильной обыкновенной дроби a/b
, и записанное в виде . При этом число n
называют целой частью числа
, а число a/b
называют дробной частью числа
.

По определению смешанное число равно сумме свой целой и дробной части, то есть, справедливо равенство , которое можно записать и так: .

Приведем примеры смешанных чисел
. Число — это смешанное число, натуральное число 5
– целая часть числа , а — дробная часть числа . Другими примерами смешанных чисел являются .

Иногда можно встретить числа в смешанной записи, но имеющие дробной частью неправильную дробь, например, или . Эти числа понимают как сумму их целой и дробной части, например, и . Но такие числа не подходят под определение смешанного числа, так как дробной частью смешанных чисел должна быть правильная дробь.

Число — это тоже не смешанное число, так как 0
не натуральное число.

Связь между смешанными числами и неправильными дробями

Проследить связь между смешанными числами и неправильными дробями
лучше всего на примерах.

Пусть на подносе лежит торт и еще 3/4
такого же торта. То есть, по смыслу сложения на подносе находится 1+3/4
торта. Записав последнюю сумму в виде смешанного числа, констатируем, что на подносе находится торта. Теперь целый торт разрежем на 4
равные доли. В результате на подносе окажется 7/4
торта. Понятно, что «количество» торта при этом не изменилось, поэтому .

Из рассмотренного примера явно видна такая связь: любое смешанное число можно представить в виде неправильной дроби
.

А теперь пусть на подносе находятся 7/4
торта. Сложив из четырех долей целый торт, на подносе окажется 1+3/4
, то есть, торта. Отсюда видно, что .

Из этого примера понятно, что неправильную дробь можно представить в виде смешанного числа
. (В частном случае, когда числитель неправильной дроби делится нацело на знаменатель, неправильную дробь можно представить в виде натурального числа, например, , так как 8:4=2
).

Перевод смешанного числа в неправильную дробь

Для выполнения различных действий со смешанными числами оказывается полезным навык представления смешанных чисел в виде неправильных дробей. В предыдущем пункте мы выяснили, что любое смешанное число можно перевести в неправильную дробь. Пришло время разобраться, как осуществляется такой перевод.

Запишем алгоритм, показывающий как перевести смешанное число в неправильную дробь
:

Рассмотрим пример перевода смешанного числа в неправильную дробь.

Пример.

Представьте смешанное число в виде неправильной дроби.

Решение.

Выполним все необходимые шаги алгоритма.

Смешанное число равно сумме его целой и дробной части: .

Записав число 5
как 5/1
, последняя сумма примет вид .

Чтобы закончить перевод исходного смешанного числа в неправильную дробь, осталось выполнить сложение дробей с разными знаменателями : .

Краткая запись всего решения такова: .

Ответ:

Итак, чтобы осуществить перевод смешанного числа в неправильную дробь, нужно выполнить следующую цепочку действий: . В итоге получена , которую мы и будем использовать в дальнейшем.

Пример.

Запишите смешанное число в виде неправильной дроби.

Решение.

Воспользуемся формулой для перевода смешанного числа в неправильную дробь. В этом примере n=15
, a=2
, b=5
. Таким образом, .

Ответ:

Выделение целой части из неправильной дроби

В ответе не принято записывать неправильную дробь. Неправильную дробь предварительно заменяют либо равным ей натуральным числом (когда числитель делится нацело на знаменатель), либо проводят так называемое выделение целой части из неправильной дроби (когда числитель не делится нацело на знаменатель).

Определение.

Выделение целой части из неправильной дроби
– это замена дроби равным ей смешанным числом.

Осталось узнать, как можно выделить целую часть из неправильной дроби.

Это очень просто: неправильная дробь a/b
равна смешанному числу вида , где q
— неполное частное, а r
– остаток от деления a
на b
. То есть, целая часть равна неполному частному от деления a
на b
, а остаток равен числителю дробной части.

Докажем это утверждение.

Для этого достаточно показать, что . Переведем смешанное в неправильную дробь так, как мы это делали в предыдущем пункте: . Так как q
– неполное частное, а r
– остаток от деления a
на b
, то справедливо равенство a=b·q+r
(при необходимости смотрите

OnlineMSchool

Изучение математики онлайн.

Изучайте математику с нами и убедитесь: «Математика — это просто!»

Всякую неправильную дробь можно представить в виде натурального числа или суммы натурального числа и правильной дроби:

17  =  16 + 1  =  16  +  1  = 4 +  1  = 4 1 ;
4 4 4 4 4 4

Для преобразования неправильной дроби в смешанную дробь необходимо

  • поделить числитель дроби на ее знаменатель;
  • остаток от деления записать в числитель знаменатель оставить прежним;
  • результат от деления записать в качестве целой части.

Пример преобразования неправильной дроби в смешанное число

Пример 1.

Преобразовать неправильную дробь

2554

в смешанное число.

Поделив 255 на 4 найдем целую часть и остаток от деления:

2 5 5 4
2 4 6 3
1 5
1 2
3

То есть целая часть равна 63, а остаток — 3, значит

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

В этом материале мы разберем такое понятие, как смешанные числа. Начнем, как всегда, с определения и небольших примеров, потом поясним связь смешанных чисел и неправильных дробей. После этого мы изучим, как правильно выделять целую часть из дроби и получать в результате целое число.

Понятие смешанного числа

Если мы возьмем сумму n + a b , где значением n может быть любое натуральное число, а a b представляет из себя правильную обыкновенную дробь, то мы можем записать то же самое, не используя плюс: n a b . Возьмем конкретные числа для ясности: так, 28 + 5 7 – это то же самое, что и 28 5 7 . Запись дроби рядом с целым числом принято называть смешанным числом.

Определение 1

Смешанное число
представляет собой такое число, которое равно сумме натурального числа n с правильной обыкновенной дробью a b . В таком случае n является целой частью числа, а a b – его дробной частью.

Из определения следует, что любое смешанное число равно тому, что получится в результате сложения его целой и дробной части. Таким образом, будет выполняться равенство n a b = n + a b .

Его также можно записать в виде n + a b = n a b .

Какие можно привести примеры смешанных чисел? Так, к ним относится 5 1 8 , при этом пятерка – это его целая часть, а одна восьмая – дробная. Еще примеры: 1 1 2 , 234 34 53 , 34000 6 25 .

Выше мы писали, что в дробной части смешанного числа должна стоять только правильная дробь. Иногда можно встретить записи вида 5 22 3 , 75 7 2 . Они не являются смешанными числами, т.к. их дробная часть неправильная. Их нужно понимать как сумму целой и дробной части. Такие числа можно привести к стандартному виду записи смешанных чисел, выделив целую часть из неправильной дроби и добавив ее к 5 и 75 в этих примерах соответственно.

Числа вида 0 3 14 также не относятся к смешанным. Здесь не выполняется первая часть условия: целая часть должна быть представлена только натуральным числом, а нуль им не является.

Как соотносятся между собой неправильные дроби и смешанные числа

Эту связь проще всего проследить на конкретном примере.

Пример 1

Возьмем целый торт и еще три четверти такого же. Согласно правилам сложения, у нас на столе находится 1 + 3 4 торта. Эту сумму можно представить в виде смешанного числа как 1 3 4 торта. Если мы возьмем целый торт и тоже разрежем его на четыре равные части, то у нас на столе будет 7 4 торта. Очевидно, что от разрезания количество не увеличилось, и 1 3 4 = 7 4 .

Наш пример доказывает, что в виде смешанного числа можно представить любую неправильную дробь.

Вернемся к нашим 7 4 торта, оставшимся на столе. Сложим из его кусочков один торт обратно (1 + 3 4) . У нас опять будет 1 3 4 .

Ответ:
7 4 = 1 3 4 .

Мы поняли, как приводить неправильную дробь к виду смешанного числа. Если в числителе неправильной дроби стоит такое число, которое можно разделить на знаменатель без остатка, то можно сделать это, и тогда наша неправильная дробь станет натуральным числом.

Пример 2

Например,

8 4 = 2 , так как 8: 4 = 2 .

Как перевести смешанное число в неправильную дробь

Чтобы успешно решать задачи, полезно уметь производить и обратное действие, то есть делать из смешанных чисел неправильные дроби. В этом пункте мы разберем, как правильно это сделать.

Для этого нужно воспроизвести следующую последовательность действий:

1. Для начала представляем имеющееся смешанное число n a b как сумму целой и дробной части. Получается n + a b

3.После этого выполняем уже знакомое действие – складываем две обыкновенные дроби n 1 и a b . Получившаяся в результате неправильная дробь и будет равной смешанному числу, данному в условии.

Разберем это действие на конкретном примере.

Пример 3

Представьте 5 3 7 в виде неправильной дроби.

Решение

Выполняем последовательно шаги указанного выше алгоритма. Наше число 5 3 7 – это сумма целой и дробной части, то есть 5 + 3 7 . Теперь пятерку запишем в виде 5 1 . У нас получилась сумма 5 1 + 3 7 .

Последний шаг – сложение дробей, имеющих разные знаменатели:

5 1 + 3 7 = 35 7 + 3 7 = 38 7

Все решение к краткой форме можно записать как 5 3 7 = 5 + 3 7 = 5 1 + 3 7 = 35 7 + 3 7 = 38 7 .

Ответ:
5 3 7 = 38 7 .

Таким образом, с помощью указанной выше цепочки действий мы можем перевести любое смешанное число n a b в неправильную дробь. У нас получилась формула n a b = n · b + a b , которую мы и будем брать для решения дальнейших задач.

Пример 4

Представьте 15 2 5 в виде неправильной дроби.

Решение

Возьмем указанную формулу и подставим в нее нужные значения. У нас n = 15 , a = 2 , b = 5 , следовательно, 15 2 5 = 15 · 5 + 2 5 = 77 5 .

Ответ:
15 2 5 = 77 5 .

Обычно мы не указываем неправильную дробь в качестве итогового ответа. Принято доводить вычисления до конца и заменять ее либо натуральным числом (разделив числитель на знаменатель), либо смешанным числом. Как правило, первый способ используется, когда разделить числитель на знаменатель можно без остатка, а второй – если такое действие невозможно.

Когда мы выделяем из неправильной дроби целую часть, мы просто заменяем ее равным смешанным числом.

Разберем, как именно это делается.

Определение 2

Приведем доказательство этого утверждения.

Нам требуется пояснить, почему q r b = a b . Для этого смешанное число q r b надо представить в виде неправильной дроби, выполнив все шаги алгоритма из предыдущего пункта. Поскольку – неполное частное, а r – остаток от деления a на b , то должно выполняться равенство a = b · q + r .

Таким образом, q · b + r b = a b поэтому q r b = a b . Это и есть доказательство нашего утверждения. Подытожим:

Определение 3

Выделение целой части из неправильной дроби a b осуществляется таким образом:

1) производим деление a на b с остатком и записываем неполное частное q и остаток r отдельно.

2) Записываем результаты в виде q r b . Это и есть наше смешанное число, равное исходной неправильной дроби.

Пример 5

Представьте 107 4 в виде смешанного числа.

Решение

Делим 104 на 7 столбиком:

Деление числителя a = 118 на знаменатель b = 7 дает нам в итоге неполное частное q = 16 и остаток r = 6 .

В итоге мы получаем, что неправильная дробь 118 7 равна смешанному числу q r b = 16 6 7 .

Ответ:
118 7 = 16 6 7 .

Нам осталось посмотреть, как заменить неправильную дробь натуральным числом (при условии, что ее числитель делится на знаменатель без остатка).

Для этого вспомним, какая связь существует между обыкновенными дробями и делением. Из этого можно вывести равенства: a b = a: b = c . Получается, что неправильную дробь a b можно заменить натуральным числом c .

Пример 6

Например, если в ответе получилась неправильная дробь 27 3 , то можем записать вместо нее 9 , поскольку 27 3 = 27: 3 = 9 .

Ответ:
27 3 = 9 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

    Перевести неправильную дробь в правильную можно путем деления числителя такой дроби на знаменатель — таким образом мы получим правильную дробь. По другому неправильную дробь можно записать в виде простого десятичного числа.

    неправильная дробь — дробь, у которой числитель больше знаменателя. правильная — та дробь, у которой, соответственно, числитель меньше знаменателя. неправильную дробь превратить в правильную никак нельзя, но зато ее можно представить в виде смешанного числа, состоящего из двух частей (одна часть будет целым числом, а другая — как раз правильной дробью).

    например 5/2=2+1/2 (только пишут дробь обычно сразу после целого числа без знака quot;плюсquot;)

    здесь нужно числитель неправильной дроби разделить на знаменатель. записываем целую часть от деления (в нашем случае 2). затем остаток от деления (то есть 1) записываем как числитель дроби, которую мы записываем рядом с двойкой.

    Из школьного курса математики мы знаем. что неправильная дробь представляет собой дробь у которой числитель больше, чем ее знаменатель. Чтобы перевести ее в правильную дробь, нужно числитель такой дроби разделить на ее знаменатель. Все очень просто, таким образом она станет правильной, либо десятичной дробью.

    Неправильная дробь например: 9/5 выделим у нее целую часть это будет: 1
    4/5 теперь она немного похоже на правильную только с целой частью это единица.

    Можно и превратить ее в десятичную дробь в нашем случае будет 1.8

    Чтобы решить поставленную задачу, сначала нужно четко уяснить для себя, что такое правильная дробь, а что такое неправильная.

    Начнем с того, что утверждение

    верно далеко не для всех чисел на числовой оси.

    числитель равен (-10), знаменатель равен (-4)

    аналогичное утверждение

    верно также не всегда

    числитель равен 2, знаменатель равен (-3)

    Неправильную дробь можно записать с помощью суммы целого числа и правильной дроби (смешанной дроби) и для этого нужно:

    разделить числитель на знаменатель, полученное целое число записать в целой части, остаток в числителе, знаменатель оставить без изменений

    в числителе (-15), в знаменателе 2, минус вынесем за пределы дроби — (15/2), 15 разделим на 2, целое число 7 ставим в целую часть дроби, остаток от деления 1 запишем в числителе, а знаменатель 2 оставим без изменений.

    Для того чтобы преобразовать неправильную дробь в правильную для начала необходимо сказать:

    У неправильной дроби числитель (верхнее число в дроби) больше знаменателя ил равна ему;

    У правильной дроби все наоборот.

    Процесс преобразования разберем на примере дроби 260/7:

    1) Сначала делим 260 на 7, получаем число 37,14..

    2) Число 37 будет стоять впереди дроби как целое число

    3) Теперь 37 * 7 = 259

    4) От числителя отнимаем получившееся число 260 — 259 = 1 — это число и будет в числители нашей правильной дроби.

    5) При записи новой дроби знаменатель остается неизменной. В данном случае это 7. Правильная дробь будет выглядит следующим образом:

    Проверка преобразованной дроби:

    Целое число умножаем на знаменатель и прибавляем числитель 37 * 7 + 1 = 260.

    Правильной дробью называется такая дробь, у которой знаменатель больше числителя. Это говорит о том, что эта дробь показывает какую-то часть целого. Например дробь 1/2 говорит о том что у нас есть половина например арбуза, а дробь 7/9 — что у нас осталось семь кусочков арбуза разрезанного на 9 частей. Две части кто-то съел.

    Если же дробь неправильная, то есть числитель больше знаменателя, то совершенно непонятно, какая у нас часть целого, но разрезанного арбуза и сколько еще целых арбузов в наличии. Поэтому приходится перевести неправильную дробь в правильную. при этом мы получим какое-то целое число и остаток — именно правильную дробь.

    Для перевода делим числитель на знаменатель в столбик. Пример: 7/4. Семь на четыре дает единицу и остаток 3/4. Вот мы и перевели дробь в правильную — ответ 1 и 3/4.

    Неправильной дробью
    называют такую дробь, у которой числитель больше знаменателя
    . Значит правильная дробь та, у которой числитель меньше знаменателя. Чтобы превратить неправильную дробь в правильную можно представить в виде десятичного числа. Например 17/8 можно записать так: 2,125. Или записать так: 2 1/8.

    Правильной дробью принято считать такую, у которой знаменатель выше числителя. Для того чтобы неправильную дробь перевести в правильную, надо разделить числитель неправильной дроби на ее знаменатель, результатом будет число с остатком.

    Например 4 целых и три одиннадцатых, мы 4 умножаем на 11 и +3 , потом мы делим на 11 , получается 44 +3 и делим на 11 , и получим дробь 47/11 . Неправильная дробь это когда есть целое число например 5,10 , то есть пять целых и 10/100 , пять мы умножаем 100 и +10 , получается 10/500 . Так же если например 6,6 , тут проще, 6 умножаем на 6 и +6 получается 12/6 , сокращаем на два, получается шесть третьих, шесть третьих мы сокращаем на три получается две первых, два делим на один получается два. То есть 6,6 =2.

Огромный блок математики посвящен работе с дробями или нецелыми числами. С ними очень часто встречаются и в жизни, поэтому знать, как работать с такими цифрами важно для любого человека. Математика – это наука, в которой ученик начинает с познания простых вещей и действий, а затем переходит к более сложным.

Знание и умение работать с подобными цифрами облегчит ему в дальнейшем работу с логарифмами, рациональными показателями и интегралами. С такими числами можно делать все то же самое, что и с обыкновенными: складывать дроби, делить, вычитать и умножать. Кроме этого, их можно сокращать. Работать с дробями просто, главное – это знать основные правила и методы их вычисления.

Основные понятия

Для того, чтобы понять, что это за значение такое, необходимо представить некий целый предмет. Допустим, что есть торт, который порезали на несколько одинаковых или равных кусков. Каждый кусочек будет называться долей.

Например, 10 состоит из 5 двоек, каждая двойка – это часть от десяти.

Доли имеют свои названия, в зависимости от их общего количества в целом числе: 10 может состоять из двух пятёрок или пяти двоек, в первом случае она будет называться (одна вторая), а во втором — (одна пятая). Следует помнить, что равняется половине числа, (одна третья) — трети, а (одна четвертая) – четвертью. Их могут также изображать через черточку: ½, 1/3 или 1/5.

Цифру, написанную сверху горизонтальной линии или слева от наклонной, называют числителем
– он показывает сколько долей взяли у целого числа, а цифра под линии или справа от нее – знаменатель,
он показывает на сколько всего долей разделили. Например, торт разделили на 10 кусков и сразу отложили два из них для опоздавших гостей. Это будет 2/10 (две десятых), т.е. взяли 2 (числитель) куска от общих 10 (знаменатель).

Какие бывают доли, что такое неправильная дробь, что такое обыкновенная дробь? На эти вопросы легко ответить:

Смешанная цифра всегда может трансформироваться в неправильную дробь
и наоборот.

Главное свойство гласит: при умножении, а также деления делимого и делителя на одинаковый множитель, в целом величина дроби не изменится.
Это свойство делает возможным все операции с дробями.

Как сократить?

Главное правило гласит, что долевую цифру можно сократить — поделить ее числитель и знаменатель на одинаковый делитель
(отличный от 0) так, чтобы получилась новая цифра с меньшими параметрами, но равная исходной по величине. Исходя из этого правила можно понять, что дроби бывают сократимые и несократимые
.

Пример сокращения дробей: 8/24 сократим, поделив ее параметры на 2. Получим: 8:2=4 и 24:2=12. В результате, исходная цифра превратится в 4/12 . Можно повторить операцию, вновь поделив числа: 4:2=2 и 12:2=6. Получим 2/6. Еще раз повторим операцию: 2:2=1 и 6:2=3. В итоге получится несократимая цифра 1/3, поскольку ее параметры уже нельзя разделить на одинаковый делитель. Любое сократимое число можно
привести к несократимому.

Сокращать можно при умножении дробных выражений друг на друга: *. Сами по себе эти числа несократимые, но выполняя операцию умножения, можно сократить их по диагонали: * = =. Сокращать при умножении можно только крест-накрест:
числитель первой со знаменателем второй, и наоборот.

Сокращать можно и смешанную цифру, т.е. целую часть и правильную дробь представить в виде неправильной. Для этого следует выполнить
некоторые действия:

Справедливо и обратное действие: из неправильной дроби сделать смешанную. Для этого рассмотрим обратное действие с :

Таким способом сокращать дроби при любых операциях возможно. Можно сокращать значения ее делимого и делителя при умножении их на одинаковый множитель, и превращая из смешанного числа в долю, и наоборот.

Возможные действия

Все основные виды вычислений доступны при счете долей, как и с целыми цифрами: сложение, вычитание и прочие. Рассмотрим каждое действие по отдельности с примерами:

Сложение и вычитание

Складывать доли можно двумя путями, в зависимости от их делителя. Они бывают одинаковыми и разными. Рассмотрим пример складывания долей с одинаковыми делителями.

Для решения + необходимо по отдельности сложить делимое долей, а делитель не трогать: 1+1. Результатом станет цифра , но поскольку она неправильная, то ее можно преобразовать в смешанную, разделив делимое на делитель: 2:2= 1. Неправильную долю всегда (!) следует приводить к правильной и несокращаемой,
т. е. если ее делимое и делитель можно поделить на одинаковый множитель – это следует сделать в обязательно порядке.

В случае сложения долей с различными делителями, их необходимо изначально привести к одинаковому
. Например, для решения: необходимо:

Вычитание осуществляется точно так же: в случае с одинаковыми делителями их не трогаем, а числители последовательно вычитаем: — = = . Если же знаменатели различные, то следует поступить, как и при сложении: найти НОК, множители, умножить доли, а затем вычесть уже доли с одинаковыми делителями.

Какие виды дробей существуют?

Для начала о том, что это такое. Дробь — число, которое имеет некоторую часть от единицы. Ее можно записать в двух видах. Первый носит название обыкновенной. То есть такая, у которой есть горизонтальная или наклонная черта. Она приравнивается к знаку деления.

В такой записи число, стоящее над черточкой, называется числителем, а под ней — знаменателем.

Среди обыкновенных выделяют правильные и неправильные дроби. У первых числитель по модулю всегда меньше знаменателя. Неправильные потому так и называются, что у них все наоборот. Значение правильной дроби всегда меньше единицы. В то время как неправильная всегда больше этого числа.

Есть еще смешанные числа, то есть такие у которых имеются целая и дробная части.

Второй вид записи — десятичная дробь. О ней отдельный разговор.

Чем отличаются неправильные дроби от смешанных чисел?

По своей сути, ничем. Это просто разная запись одного и того же числа. Неправильные дроби после несложных действий легко становятся смешанными числами. И наоборот.

Все зависит от конкретной ситуации. Иногда в заданиях удобнее использовать неправильную дробь. А порой необходимо перевести ее в смешанное число и тогда пример решится очень легко. Поэтому, что использовать: неправильные дроби, смешанные числа, — зависит от наблюдательности решающего задачу.

Смешанное число еще сравнивают с суммой целой части и дробной. Причем вторая всегда меньше единицы.

Как представить смешанное число в виде неправильной дроби?

Если требуется выполнить какое-либо действие с несколькими числами, которые записаны в разных видах, то нужно сделать их одинаковыми. Один из методов — представить числа в виде неправильных дробей.

Для этой цели потребуется выполнить действия по такому алгоритму:

  • умножить знаменатель на целую часть;
  • прибавить к результату значение числителя;
  • записать ответ над чертой;
  • знаменатель оставить тем же.

Вот примеры того, как записать неправильные дроби из смешанных чисел:

  • 17 ¼ = (17 х 4 + 1) : 4 = 69/4;
  • 39 ½ = (39 х 2 + 1) : 2 = 79/2.

Как записать неправильную дробь в виде смешанного числа?

Следующий прием противоположен рассмотренному выше. То есть когда все смешанные числа заменяются на неправильные дроби. Алгоритм действий будет таким:

  • разделить числитель на знаменатель до получения остатка;
  • записать частное на месте целой части смешанного;
  • остаток следует разместить над чертой;
  • делитель будет знаменателем.

Примеры такого преобразования:

76/14; 76:14 = 5 с остатком 6; ответом будет 5 целых и 6/14; дробную часть в этом примере нужно сократить на 2, получится 3/7; итоговый ответ — 5 целых 3/7.

108/54; после деления получается частное 2 без остатка; это значит, что не все неправильные дроби удается представить в виде смешанного числа; ответом будет целое — 2.

Как целое число превратить в неправильную дробь?

Бывают ситуации, когда необходимо и такое действие. Чтобы получить неправильные дроби с заранее известным знаменателем, потребуется выполнить такой алгоритм:

  • умножить целое число на нужный знаменатель;
  • записать это значение над чертой;
  • разместить под ней знаменатель.

Самый простой вариант, когда знаменатель равен единице. Тогда ничего умножать не нужно. Достаточно просто написать целое число, которое дано в примере, а под чертой расположить единицу.

Пример
: 5 сделать неправильной дробью со знаменателем 3. После умножения 5 на 3 получается 15. Это число будет знаменателем. Ответ задания дробь: 15/3.

Два подхода к решению заданий с разными числами

В примере требуется вычислить сумму и разность, а также произведение и частное двух чисел: 2 целых 3/5 и 14/11.

В первом подходе
смешанное число будет представлено в виде неправильной дроби.

После выполнения действий, описанных выше, получится такое значение: 13/5.

Для того чтобы узнать сумму, нужно привести дроби к одинаковому знаменателю. 13/5 после умножения на 11 станет 143/55. А 14/11 после умножения на 5 примет вид: 70/55. Для вычисления суммы нужно только сложить числители: 143 и 70, а потом записать ответ с одним знаменателем. 213/55 — эта неправильная дробь ответ задачи.

При нахождении разности эти же числа вычитаются: 143 — 70 = 73. Ответом будет дробь: 73/55.

При умножении 13/5 и 14/11 не нужно приводить к общему знаменателю. Достаточно перемножить попарно числители и знаменатели. Получится ответ: 182/55.

Так же и при делении. Для правильного решения нужно заменить деление на умножение и перевернуть делитель: 13/5: 14/11 = 13/5 х 11/14 = 143/70.

Во втором подходе
неправильная дробь обращается в смешанное число.

После выполнения действий алгоритма 14/11 обратится в смешанное число с целой частью 1 и дробной 3/11.

Во время вычисления суммы нужно сложить целые и дробные части по отдельности. 2 + 1 = 3, 3/5 + 3/11 = 33/55 + 15/55 = 48/55. Итоговый ответ получается 3 целых 48/55. В первом подходе была дробь 213/55. Проверить правильность можно, переведя его в смешанное число. После деления 213 на 55 получается частное 3 и остаток 48. Нетрудно заметить, что ответ правильный.

При вычитании знак «+» заменяется на «-». 2 — 1 = 1, 33/55 — 15/55 = 18/55. Для проверки ответ из предыдущего подхода нужно перевести в смешанное число: 73 делится на 55 и получается частное 1 и остаток 18.

Для нахождения произведения и частного пользоваться смешанными числами неудобно. Здесь всегда рекомендуется переходить к неправильным дробям.

Как сделать из неправильной дроби правильную?

    Само слово — дробь означает, что число дробное, оно меньше целого (как минимум единицы).

    Следовательно, необходимо выделить целое число из числителя. Например, число 30/4 — дробь неправильная, поскольку 30 больше, чем 4. Значит, нужно просто разделить 30 на 4 и получим число до запятой — 7, его то и ставим перед дробью. Умножим 7 на 4 и вычтем это число из 30 — получится 2 — оно будет в числителе дроби. Итог — 7 2/4, сокращаем — 7 1/2. В вашем примере, ответ — 2 3/4.

    Для того необходимо чтслитель: на знаменатель.

    То целое, что получилось — пишите в числитель. Знаменатель тот, что был. Когда поделите — записывайте в целую часть.

    11:4=2 (3 остаток).

    Получаем правил-ую дробь: 2 — целых 34

    Чтобы сделать из неправильной дроби правильную, нужно выявить целые части и отнять их из неправильной дроби. В нашем случае неправильная дробь 11/4. Целых частей будет две (2). Вычитаем их и получаем правильную дробь: две целых три четвртых (2 целых 3/4).

    Неправильную дробь, в нашем случае 11/4 нужно перевести в правильную, т.е. в этом случае смешанную дробь. Если по-простому, то дробь неправильная, потому что в ней помимо дроби есть и целое число. Это как стоит в холодильнике тортик непочатый, хоть и порезанный, а на столе — осталось несколько кусочков от второго. Когда говорим об 11/4, то мы уже не знаем о двух целых тортах, видим лишь одиннадцать крупных кусков. 11 разделили на 4, получили 2, а остаток 11-8=3. Итак, 2 целых 3/4, теперь дробь правильная, в ней числитель поменьше знаменателя будет, но смешанная, так как без целых единиц расчет не обошелся.

    Чтобы из неправильной дроби сделать правильную, надо числитель разделить на знаменатель. Полученное целое число выносим перед дробью, а остаток вписываем в числитель. Знаменатель не изменяется.

    Например: дробь 11/4 — неправильная, где числитель равен 11, а знаменатель — 4.

    Сначала 11 делим на 4, получим 2 целых и 3 остаток. Выносим 2 перед дробью, а остаток 3 пишем в числитель 3/4. Таким образом дробь становится правильной — 2 целых и 3/4.

    У неправильной дроби знаменатель оказывается меньше числителя, что говорит о том, что в этой дроби имеются целые части, которые можно выделить и получить правильную дробь с целым числом.

    Самый простой способ поделить числитель на знаменатель. Полученное целое число ставим слева от дроби, а остаток пишем в числитель, знаменатель остается тем же самым.

    Например 11/4. Делим 11 на 4 и получаем 2 и остаток 3. Двойка -это число, которое ставим рядом с дробью, а тройку пишем в числитель дроби. Выходит 2 и 3/4.

    Чтобы ответить на этот несложный вопрос, можно решить такую же несложную задачку:

    Петя и Валя пришли в компанию сверстников. Всех вместе их стало 11. У Вали были с собой яблоки (но не много) и чтобы угостить всех Петя разрезал каждое на четыре части и раздал. Хватило всем и даже пять кусочков осталось.

    Сколько яблок раздал Петя и сколько яблок осталось? Сколько их было всего?

    А можно записать это математически

    11 кусочков яблока это в нашем случае 11/4 — получили неправильную дробь, так как числитель больше знаменателя.

    Чтобы выделить целую часть
    (преобразовать
    неправильную дробь в правильную), нужно числитель разделить на знаменатель
    , неполное частное (в нашем случае это 2) записать слева, остаток (3)оставить в числителе а знаменатель не трогать.

    В результате получим 11/4 = 11:4 = 2 3/4
    яблока раздал Петя.

    Аналогично 5/4 = 1 1/4 яблок осталось.

    (11+5)/4 = 16/4 = 4 яблока принесла Валя

Нехитрые математические правила и приемы, если они не используются постоянно, забываются быстрее всего. Еще быстрее уходят из памяти термины.

Одно из таких простых действий – преобразование неправильной дроби в правильную или, по-другому – смешанную.

Неправильная дробь

Неправильной называется дробь, у которой числитель (число над дробной чертой) больше или равно знаменателю (число под чертой). Такая дробь получается при сложении дробей или умножении дроби на целое число. По правилам математики такую дробь обязательно нужно превратить в правильную.

Правильная дробь

Логично предположить, что правильными называются все остальные дроби. Строгое определение – правильной называется дробь, у которой числитель меньше знаменателя. Дробь, у которой есть целая часть иногда называется смешанной.


Преобразование неправильной дроби в правильную

  • Первый случай: числитель и знаменатель равны друг другу. В результате преобразования любой такой дроби получится единица. Неважно, три третьих это или сто двадцать пять сто двадцать пятых. По сути, такая дробь обозначает действие деления числа на само себя.


  • Второй случай: числитель больше знаменателя. Здесь нужно вспомнить метод деления чисел с остатком.
    Для этого нужно найти самое близкое к значению числителя число, которое делится на знаменатель без остатка. Например, у вас есть дробь девятнадцать третьих. Наиболее близкое число, которое можно разделить на три – это восемнадцать. Получится шесть. Теперь отнимите от числителя полученное число. Получим единицу. Это и есть остаток. Запишите результат преобразования: шесть целых и одна треть.


Но прежде чем приводить дробь к правильному виду, нужно проверить, можно ли её сократить.
Сокращение дроби возможно, если у числителя и знаменателя есть общий делитель. То есть такое число, на которое и то, и другое делится без остатка. Если таких делителей несколько, нужно найти наибольший.
Например, у всех четных чисел такой общий делитель – двойка. А у дроби шестнадцатых двенадцатых, есть еще один общий делитель – четверка. Это наибольший делитель. Разделите числитель и знаменатель на четыре. Результат сокращения: четыре третьих. А теперь, в качестве тренировки, преобразуйте эту дробь в правильную.

Десятичные числа, такие как 0,2; 1,05; 3,017 и т.п. как слышатся, так и пишутся. Ноль целых две десятых, получаем дробь . Одна целая пять сотых, получаем дробь . Три целых семнадцать тысячных, получаем дробь . Цифры до запятой в десятичном числе — это целая часть дроби. Цифра после запятой — числитель будущей дроби. Если после запятой однозначное число — в знаменателе будет 10, если двухзначное — 100, трехзначное — 1000 и т.д. Некоторые полученные дроби можно сократить . В наших примерах

Преобразование дроби в десятичное число

Это обратное предыдущему преобразованию. Десятичная дробь чем характерна? У неё в знаменателе всегда стоит 10, или 100, или 1000, или 10000 и так далее. Если ваша обычная дробь имеет такой знаменатель, проблем нет. Например, или

Если дробь, например . В этом случае необходимо воспользоваться основным свойством дроби и преобразовать знаменатель до 10 или 100, или 1000 … В нашем примере, если домножить числитель и знаменатель на 4, получим дробь , которую возможно записать в виде десятичного числа 0,12.

Некоторые дроби проще разделить, чем преобразовать знаменатель. Например,

Некоторые дроби невозможно преобразовать в десятичные числа!

Например,

Преобразование смешанной дроби в неправильную

Смешанную дробь, например , легко преобразовать в неправильную. Для этого необходимо целую часть умножить на знаменатель (низ) и сложить с числителем (верх), знаменатель (низ) оставить без изменения. То есть

При преобразовании смешанной дроби в неправильную, можно вспомнить, что Можно использовать сложение дробей

Преобразование неправильной дроби в смешанную (выделение целой части)

Неправильную дробь можно перевести в смешанную, выделив целую часть. Рассмотрим пример, . Определяем, сколько целых раз «3» вмещается в «23». Или 23 делим на 3 на калькуляторе, целое число до запятой — искомое. Это «7». Далее определяем числитель уже будущей дроби: полученную «7» умножаем на знаменатель «3» и из числителя «23» вычитаем полученное. Как бы находим то лишнее, что остается от числителя «23», если изъять максимальное количество «3». Знаменатель оставляем без изменения. Все сделано, записываем результат

Если вам необходимо перевести неправильную дробь в смешанное число или наоборот воспользуйтесь нашим онлайн калькулятором:

Перевод неправильной дроби в смешанное число

Перевод смешанного числа в неправильную дробь

Просто заполните необходимые поля и получите ответ и подробное решение.

Теория

Как перевести неправильную дробь в смешанное число

Для того чтобы перевести неправильную дробь в смешанное число, то есть выделить целую часть из неправильной дроби, нужно произвести следующие действия:

  • Сократить дробь, если это возможно
  • Разделить в столбик числитель на знаменатель
  • Полученное целое число записать в целую часть смешанного числа
  • Полученный остаток записать в числитель, а знаменатель оставить прежним

Пример №1

Преобразуем 146 в смешанное число:

146=7⋅23⋅2=73

73=213

Всё решение можно ещё записать так:

146=7⋅23⋅2=73=2⋅3+13=2⋅33 + 13=213

Тут мы раскладываем число 7 на 2⋅3+1 и далее путём сокращения получаем результат.

Пример №2

Преобразуем 83 в смешанное число:

83=2⋅3+23=2⋅33 + 23=223

Как перевести смешанное число в неправильную дробь

Для того чтобы перевести смешанное число (смешенную дробь) в неправильную дробь следует воспользоваться следующей формулой:

Формула

a bc=b+a⋅cc

Пример

Преобразуем 213 в неправильную дробь:

213=1+2⋅33=73

См. также

Чтобы преобразовать неправильную дробь, числитель которой нацело не делится на знаменатель, в смешанную дробь надо числитель разделить на знаменатель. Полученное целое число записать как целое число смешанной дроби. А остаток от деления в числитель. Знаменатель останется прежним. Далее сократить дробь.

Разберём пример

Преобразуем неправильную дробь в смешанную дробь

Разделим 11 на 4 получится 2 целые и остаток 3. Целую часть запишем в целую часть смешанного числа а остаток будет числителем смешанного числа

Неправильная дробь это дробь в которой числитель больше или равен знаменателю

Дробь записанная в виде целого числа и обыкновенной дроби называется смешанной

Похожие калькуляторы